ML Anthology
Authors
Search
About
Kleindessner, Matthäus
18 publications
TMLR
2025
A Proximal Operator for Inducing 2:4-Sparsity
Jonas M. Kübler
,
Yu-Xiang Wang
,
Shoham Sabach
,
Navid Ansari
,
Matthäus Kleindessner
,
Kailash Budhathoki
,
Volkan Cevher
,
George Karypis
NeurIPS
2025
Block-Diagonal LoRA for Eliminating Communication Overhead in Tensor Parallel LoRA Serving
Xinyu Wang
,
Jonas M. Kübler
,
Kailash Budhathoki
,
Yida Wang
,
Matthäus Kleindessner
AISTATS
2023
Efficient Fair PCA for Fair Representation Learning
Matthäus Kleindessner
,
Michele Donini
,
Chris Russell
,
Muhammad Bilal Zafar
ICML
2023
When Do Minimax-Fair Learning and Empirical Risk Minimization Coincide?
Harvineet Singh
,
Matthäus Kleindessner
,
Volkan Cevher
,
Rumi Chunara
,
Chris Russell
AISTATS
2022
Pairwise Fairness for Ordinal Regression
Matthäus Kleindessner
,
Samira Samadi
,
Muhammad Bilal Zafar
,
Krishnaram Kenthapadi
,
Chris Russell
ICML
2022
Active Sampling for Min-Max Fairness
Jacob D Abernethy
,
Pranjal Awasthi
,
Matthäus Kleindessner
,
Jamie Morgenstern
,
Chris Russell
,
Jie Zhang
NeurIPS
2022
Are Two Heads the Same as One? Identifying Disparate Treatment in Fair Neural Networks
Michael Lohaus
,
Matthäus Kleindessner
,
Krishnaram Kenthapadi
,
Francesco Locatello
,
Chris Russell
ICML
2022
Individual Preference Stability for Clustering
Saba Ahmadi
,
Pranjal Awasthi
,
Samir Khuller
,
Matthäus Kleindessner
,
Jamie Morgenstern
,
Pattara Sukprasert
,
Ali Vakilian
CVPR
2022
Leveling Down in Computer Vision: Pareto Inefficiencies in Fair Deep Classifiers
Dominik Zietlow
,
Michael Lohaus
,
Guha Balakrishnan
,
Matthäus Kleindessner
,
Francesco Locatello
,
Bernhard Schölkopf
,
Chris Russell
ICML
2022
Score Matching Enables Causal Discovery of Nonlinear Additive Noise Models
Paul Rolland
,
Volkan Cevher
,
Matthäus Kleindessner
,
Chris Russell
,
Dominik Janzing
,
Bernhard Schölkopf
,
Francesco Locatello
NeurIPS
2021
Backward-Compatible Prediction Updates: A Probabilistic Approach
Frederik Träuble
,
Julius von Kügelgen
,
Matthäus Kleindessner
,
Francesco Locatello
,
Bernhard Schölkopf
,
Peter V. Gehler
AISTATS
2020
Equalized Odds Postprocessing Under Imperfect Group Information
Pranjal Awasthi
,
Matthäus Kleindessner
,
Jamie Morgenstern
ICML
2019
Fair K-Center Clustering for Data Summarization
Matthäus Kleindessner
,
Pranjal Awasthi
,
Jamie Morgenstern
ICML
2019
Guarantees for Spectral Clustering with Fairness Constraints
Matthäus Kleindessner
,
Samira Samadi
,
Pranjal Awasthi
,
Jamie Morgenstern
NeurIPS
2017
Kernel Functions Based on Triplet Comparisons
Matthäus Kleindessner
,
Ulrike von Luxburg
JMLR
2017
Lens Depth Function and K-Relative Neighborhood Graph: Versatile Tools for Ordinal Data Analysis
Matthäus Kleindessner
,
Ulrike von Luxburg
AISTATS
2015
Dimensionality Estimation Without Distances
Matthäus Kleindessner
,
Ulrike von Luxburg
COLT
2014
Uniqueness of Ordinal Embedding
Matthäus Kleindessner
,
Ulrike von Luxburg