ML Anthology
Authors
Search
About
Klivans, Adam
39 publications
NeurIPS
2025
Ambient Diffusion Omni: Training Good Models with Bad Data
Giannis Daras
,
Adrian Rodriguez-Munoz
,
Adam Klivans
,
Antonio Torralba
,
Constantinos Costis Daskalakis
NeurIPS
2025
Ambient Proteins - Training Diffusion Models on Noisy Structures
Giannis Daras
,
Jeffrey Ouyang-Zhang
,
Krithika Ravishankar
,
Constantinos Costis Daskalakis
,
Adam Klivans
,
Daniel Jesus Diaz
ICLR
2025
Distilling Structural Representations into Protein Sequence Models
Jeffrey Ouyang-Zhang
,
Chengyue Gong
,
Yue Zhao
,
Philipp Kraehenbuehl
,
Adam Klivans
,
Daniel Jesus Diaz
ICML
2025
Does Generation Require Memorization? Creative Diffusion Models Using Ambient Diffusion
Kulin Shah
,
Alkis Kalavasis
,
Adam Klivans
,
Giannis Daras
COLT
2025
Learning Constant-Depth Circuits in Malicious Noise Models
Adam Klivans
,
Konstantinos Stavropoulos
,
Arsen Vasilyan
NeurIPS
2025
Learning Juntas Under Markov Random Fields
Gautam Chandrasekaran
,
Adam Klivans
ICLR
2025
Learning Neural Networks with Distribution Shift: Efficiently Certifiable Guarantees
Gautam Chandrasekaran
,
Adam Klivans
,
Lin Lin Lee
,
Konstantinos Stavropoulos
NeurIPS
2025
The Power of Iterative Filtering for Supervised Learning with (Heavy) Contamination
Adam Klivans
,
Konstantinos Stavropoulos
,
Kevin Tian
,
Arsen Vasilyan
ICLR
2024
An Efficient Tester-Learner for Halfspaces
Aravind Gollakota
,
Adam Klivans
,
Konstantinos Stavropoulos
,
Arsen Vasilyan
NeurIPSW
2024
Distilling Structural Representations into Protein Sequence Models
Jeffrey Ouyang-Zhang
,
Chengyue Gong
,
Yue Zhao
,
Philipp Kraehenbuehl
,
Adam Klivans
,
Daniel Jesus Diaz
ICML
2024
Evolution-Inspired Loss Functions for Protein Representation Learning
Chengyue Gong
,
Adam Klivans
,
James Madigan Loy
,
Tianlong Chen
,
Qiang Liu
,
Daniel Jesus Diaz
ICLRW
2024
Evolution-Inspired Loss Functions for Protein Representation Learning
Chengyue Gong
,
Adam Klivans
,
James Madigan Loy
,
Tianlong Chen
,
Qiang Liu
,
Daniel Jesus Diaz
COLT
2024
Learning Intersections of Halfspaces with Distribution Shift: Improved Algorithms and SQ Lower Bounds
Adam Klivans
,
Konstantinos Stavropoulos
,
Arsen Vasilyan
COLT
2024
Smoothed Analysis for Learning Concepts with Low Intrinsic Dimension
Gautam Chandrasekaran
,
Adam Klivans
,
Vasilis Kontonis
,
Raghu Meka
,
Konstantinos Stavropoulos
COLT
2024
Testable Learning with Distribution Shift
Adam Klivans
,
Konstantinos Stavropoulos
,
Arsen Vasilyan
NeurIPS
2023
Agnostically Learning Single-Index Models Using Omnipredictors
Aravind Gollakota
,
Parikshit Gopalan
,
Adam Klivans
,
Konstantinos Stavropoulos
NeurIPS
2023
Ambient Diffusion: Learning Clean Distributions from Corrupted Data
Giannis Daras
,
Kulin Shah
,
Yuval Dagan
,
Aravind Gollakota
,
Alex Dimakis
,
Adam Klivans
NeurIPSW
2023
Binding Oracle: Fine-Tuning from Stability to Binding Free Energy
Chengyue Gong
,
Adam Klivans
,
Jordan Wells
,
James Loy
,
Qiang Liu
,
Alex Dimakis
,
Daniel Diaz
ICLR
2023
HotProtein: A Novel Framework for Protein Thermostability Prediction and Editing
Tianlong Chen
,
Chengyue Gong
,
Daniel Jesus Diaz
,
Xuxi Chen
,
Jordan Tyler Wells
,
Qiang Liu
,
Zhangyang Wang
,
Andrew Ellington
,
Alex Dimakis
,
Adam Klivans
NeurIPS
2023
Learning Mixtures of Gaussians Using the DDPM Objective
Kulin Shah
,
Sitan Chen
,
Adam Klivans
COLT
2023
Learning Narrow One-Hidden-Layer ReLU Networks
Sitan Chen
,
Zehao Dou
,
Surbhi Goel
,
Adam Klivans
,
Raghu Meka
NeurIPSW
2023
Microenvironment Flows as Protein Engineers
Chengyue Gong
,
Lemeng Wu
,
Daniel Diaz
,
Xingchao Liu
,
James Loy
,
Adam Klivans
,
Qiang Liu
NeurIPS
2023
Predicting a Protein's Stability Under a Million Mutations
Jeffrey Ouyang-Zhang
,
Daniel Diaz
,
Adam Klivans
,
Philipp Kraehenbuehl
NeurIPS
2023
Tester-Learners for Halfspaces: Universal Algorithms
Aravind Gollakota
,
Adam Klivans
,
Konstantinos Stavropoulos
,
Arsen Vasilyan
NeurIPS
2022
Hardness of Noise-Free Learning for Two-Hidden-Layer Neural Networks
Sitan Chen
,
Aravind Gollakota
,
Adam Klivans
,
Raghu Meka
NeurIPSW
2022
HotProtein: A Novel Framework for Protein Thermostability Prediction and Editing
Tianlong Chen
,
Chengyue Gong
,
Daniel Jesus Diaz
,
Xuxi Chen
,
Jordan Tyler Wells
,
Qiang Liu
,
Zhangyang Wang
,
Andrew Ellington
,
Alex Dimakis
,
Adam Klivans
NeurIPS
2021
Efficiently Learning One Hidden Layer ReLU Networks from Queries
Sitan Chen
,
Adam Klivans
,
Raghu Meka
NeurIPS
2020
From Boltzmann Machines to Neural Networks and Back Again
Surbhi Goel
,
Adam Klivans
,
Frederic Koehler
ICML
2020
Good Subnetworks Provably Exist: Pruning via Greedy Forward Selection
Mao Ye
,
Chengyue Gong
,
Lizhen Nie
,
Denny Zhou
,
Adam Klivans
,
Qiang Liu
NeurIPS
2020
Statistical-Query Lower Bounds via Functional Gradients
Surbhi Goel
,
Aravind Gollakota
,
Adam Klivans
ICML
2020
Superpolynomial Lower Bounds for Learning One-Layer Neural Networks Using Gradient Descent
Surbhi Goel
,
Aravind Gollakota
,
Zhihan Jin
,
Sushrut Karmalkar
,
Adam Klivans
NeurIPS
2019
List-Decodable Linear Regression
Sushrut Karmalkar
,
Adam Klivans
,
Pravesh Kothari
NeurIPS
2019
Time/Accuracy Tradeoffs for Learning a ReLU with Respect to Gaussian Marginals
Surbhi Goel
,
Sushrut Karmalkar
,
Adam Klivans
ICLR
2018
Hyperparameter Optimization: A Spectral Approach
Elad Hazan
,
Adam Klivans
,
Yang Yuan
ICML
2018
Learning One Convolutional Layer with Overlapping Patches
Surbhi Goel
,
Adam Klivans
,
Raghu Meka
NeurIPS
2017
Eigenvalue Decay Implies Polynomial-Time Learnability for Neural Networks
Surbhi Goel
,
Adam Klivans
ICML
2017
Exact MAP Inference by Avoiding Fractional Vertices
Erik M. Lindgren
,
Alexandros G. Dimakis
,
Adam Klivans
COLT
2017
Reliably Learning the ReLU in Polynomial Time
Surbhi Goel
,
Varun Kanade
,
Adam Klivans
,
Justin Thaler
NeurIPS
2014
Sparse Polynomial Learning and Graph Sketching
Murat Kocaoglu
,
Karthikeyan Shanmugam
,
Alexandros G Dimakis
,
Adam Klivans