ML Anthology
Authors
Search
About
Knyazev, Boris
22 publications
ICLR
2025
Accelerating Training with Neuron Interaction and Nowcasting Networks
Boris Knyazev
,
Abhinav Moudgil
,
Guillaume Lajoie
,
Eugene Belilovsky
,
Simon Lacoste-Julien
TMLR
2025
Any-Property-Conditional Molecule Generation with Self-Criticism Using Spanning Trees
Alexia Jolicoeur-Martineau
,
Aristide Baratin
,
Kisoo Kwon
,
Boris Knyazev
,
Yan Zhang
TMLR
2025
Celo: Training Versatile Learned Optimizers on a Compute Diet
Abhinav Moudgil
,
Boris Knyazev
,
Guillaume Lajoie
,
Eugene Belilovsky
ICLRW
2025
Generating $\pi$-Functional Molecules Using STGG+ with Active Learning
Alexia Jolicoeur-Martineau
,
Yan Zhang
,
Boris Knyazev
,
Aristide Baratin
,
Cheng-Hao Liu
ICLRW
2025
Hyper-Align: Efficient Modality Alignment via Hypernetworks
Jaisidh Singh
,
Diganta Misra
,
Boris Knyazev
,
Antonio Orvieto
TMLR
2025
Meta-Learning Optimizers for Communication-Efficient Learning
Charles-Étienne Joseph
,
Benjamin Thérien
,
Abhinav Moudgil
,
Boris Knyazev
,
Eugene Belilovsky
NeurIPSW
2024
$\mu$LO: Compute-Efficient Meta-Generalization of Learned Optimizers
Benjamin Thérien
,
Charles-Étienne Joseph
,
Boris Knyazev
,
Edouard Oyallon
,
Irina Rish
,
Eugene Belilovsky
ICLR
2024
Graph Neural Networks for Learning Equivariant Representations of Neural Networks
Miltiadis Kofinas
,
Boris Knyazev
,
Yan Zhang
,
Yunlu Chen
,
Gertjan J. Burghouts
,
Efstratios Gavves
,
Cees G. M. Snoek
,
David W. Zhang
ICML
2023
Can We Scale Transformers to Predict Parameters of Diverse ImageNet Models?
Boris Knyazev
,
Doha Hwang
,
Simon Lacoste-Julien
NeurIPSW
2023
Learning Optimizers for Local SGD
Charles-Étienne Joseph
,
Benjamin Thérien
,
Abhinav Moudgil
,
Boris Knyazev
,
Eugene Belilovsky
ICMLW
2023
Learning to Optimize with Recurrent Hierarchical Transformers
Abhinav Moudgil
,
Boris Knyazev
,
Guillaume Lajoie
,
Eugene Belilovsky
ICMLW
2023
Pretrained Language Models to Solve Graph Tasks in Natural Language
Frederik Wenkel
,
Guy Wolf
,
Boris Knyazev
ICMLW
2022
Hyper-Representation for Pre-Training and Transfer Learning
Konstantin Schürholt
,
Boris Knyazev
,
Xavier Giró-i-Nieto
,
Damian Borth
NeurIPS
2022
Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights
Konstantin Schürholt
,
Boris Knyazev
,
Xavier Giró-i-Nieto
,
Damian Borth
NeurIPS
2022
Model Zoos: A Dataset of Diverse Populations of Neural Network Models
Konstantin Schürholt
,
Diyar Taskiran
,
Boris Knyazev
,
Xavier Giró-i-Nieto
,
Damian Borth
ICLR
2022
On Evaluation Metrics for Graph Generative Models
Rylee Thompson
,
Boris Knyazev
,
Elahe Ghalebi
,
Jungtaek Kim
,
Graham W. Taylor
ICMLW
2022
Pretraining a Neural Network Before Knowing Its Architecture
Boris Knyazev
NeurIPS
2021
Brick-by-Brick: Combinatorial Construction with Deep Reinforcement Learning
Hyunsoo Chung
,
Jungtaek Kim
,
Boris Knyazev
,
Jinhwi Lee
,
Graham W. Taylor
,
Jaesik Park
,
Minsu Cho
ICCV
2021
Context-Aware Scene Graph Generation with Seq2Seq Transformers
Yichao Lu
,
Himanshu Rai
,
Jason Chang
,
Boris Knyazev
,
Guangwei Yu
,
Shashank Shekhar
,
Graham W. Taylor
,
Maksims Volkovs
ICCV
2021
Generative Compositional Augmentations for Scene Graph Prediction
Boris Knyazev
,
Harm de Vries
,
Cătălina Cangea
,
Graham W. Taylor
,
Aaron Courville
,
Eugene Belilovsky
NeurIPS
2021
Parameter Prediction for Unseen Deep Architectures
Boris Knyazev
,
Michal Drozdzal
,
Graham W. Taylor
,
Adriana Romero Soriano
NeurIPS
2019
Understanding Attention and Generalization in Graph Neural Networks
Boris Knyazev
,
Graham W. Taylor
,
Mohamed Amer