Knyazev, Boris

22 publications

ICLR 2025 Accelerating Training with Neuron Interaction and Nowcasting Networks Boris Knyazev, Abhinav Moudgil, Guillaume Lajoie, Eugene Belilovsky, Simon Lacoste-Julien
TMLR 2025 Any-Property-Conditional Molecule Generation with Self-Criticism Using Spanning Trees Alexia Jolicoeur-Martineau, Aristide Baratin, Kisoo Kwon, Boris Knyazev, Yan Zhang
TMLR 2025 Celo: Training Versatile Learned Optimizers on a Compute Diet Abhinav Moudgil, Boris Knyazev, Guillaume Lajoie, Eugene Belilovsky
ICLRW 2025 Generating $\pi$-Functional Molecules Using STGG+ with Active Learning Alexia Jolicoeur-Martineau, Yan Zhang, Boris Knyazev, Aristide Baratin, Cheng-Hao Liu
ICLRW 2025 Hyper-Align: Efficient Modality Alignment via Hypernetworks Jaisidh Singh, Diganta Misra, Boris Knyazev, Antonio Orvieto
TMLR 2025 Meta-Learning Optimizers for Communication-Efficient Learning Charles-Étienne Joseph, Benjamin Thérien, Abhinav Moudgil, Boris Knyazev, Eugene Belilovsky
NeurIPSW 2024 $\mu$LO: Compute-Efficient Meta-Generalization of Learned Optimizers Benjamin Thérien, Charles-Étienne Joseph, Boris Knyazev, Edouard Oyallon, Irina Rish, Eugene Belilovsky
ICLR 2024 Graph Neural Networks for Learning Equivariant Representations of Neural Networks Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J. Burghouts, Efstratios Gavves, Cees G. M. Snoek, David W. Zhang
ICML 2023 Can We Scale Transformers to Predict Parameters of Diverse ImageNet Models? Boris Knyazev, Doha Hwang, Simon Lacoste-Julien
NeurIPSW 2023 Learning Optimizers for Local SGD Charles-Étienne Joseph, Benjamin Thérien, Abhinav Moudgil, Boris Knyazev, Eugene Belilovsky
ICMLW 2023 Learning to Optimize with Recurrent Hierarchical Transformers Abhinav Moudgil, Boris Knyazev, Guillaume Lajoie, Eugene Belilovsky
ICMLW 2023 Pretrained Language Models to Solve Graph Tasks in Natural Language Frederik Wenkel, Guy Wolf, Boris Knyazev
ICMLW 2022 Hyper-Representation for Pre-Training and Transfer Learning Konstantin Schürholt, Boris Knyazev, Xavier Giró-i-Nieto, Damian Borth
NeurIPS 2022 Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights Konstantin Schürholt, Boris Knyazev, Xavier Giró-i-Nieto, Damian Borth
NeurIPS 2022 Model Zoos: A Dataset of Diverse Populations of Neural Network Models Konstantin Schürholt, Diyar Taskiran, Boris Knyazev, Xavier Giró-i-Nieto, Damian Borth
ICLR 2022 On Evaluation Metrics for Graph Generative Models Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham W. Taylor
ICMLW 2022 Pretraining a Neural Network Before Knowing Its Architecture Boris Knyazev
NeurIPS 2021 Brick-by-Brick: Combinatorial Construction with Deep Reinforcement Learning Hyunsoo Chung, Jungtaek Kim, Boris Knyazev, Jinhwi Lee, Graham W. Taylor, Jaesik Park, Minsu Cho
ICCV 2021 Context-Aware Scene Graph Generation with Seq2Seq Transformers Yichao Lu, Himanshu Rai, Jason Chang, Boris Knyazev, Guangwei Yu, Shashank Shekhar, Graham W. Taylor, Maksims Volkovs
ICCV 2021 Generative Compositional Augmentations for Scene Graph Prediction Boris Knyazev, Harm de Vries, Cătălina Cangea, Graham W. Taylor, Aaron Courville, Eugene Belilovsky
NeurIPS 2021 Parameter Prediction for Unseen Deep Architectures Boris Knyazev, Michal Drozdzal, Graham W. Taylor, Adriana Romero Soriano
NeurIPS 2019 Understanding Attention and Generalization in Graph Neural Networks Boris Knyazev, Graham W. Taylor, Mohamed Amer