ML Anthology
Authors
Search
About
Kong, Kezhi
9 publications
ICLR
2024
On the Reliability of Watermarks for Large Language Models
John Kirchenbauer
,
Jonas Geiping
,
Yuxin Wen
,
Manli Shu
,
Khalid Saifullah
,
Kezhi Kong
,
Kasun Fernando
,
Aniruddha Saha
,
Micah Goldblum
,
Tom Goldstein
ICLR
2024
OpenTab: Advancing Large Language Models as Open-Domain Table Reasoners
Kezhi Kong
,
Jiani Zhang
,
Zhengyuan Shen
,
Balasubramaniam Srinivasan
,
Chuan Lei
,
Christos Faloutsos
,
Huzefa Rangwala
,
George Karypis
ICML
2023
GOAT: A Global Transformer on Large-Scale Graphs
Kezhi Kong
,
Jiuhai Chen
,
John Kirchenbauer
,
Renkun Ni
,
C. Bayan Bruss
,
Tom Goldstein
CVPR
2022
Robust Optimization as Data Augmentation for Large-Scale Graphs
Kezhi Kong
,
Guohao Li
,
Mucong Ding
,
Zuxuan Wu
,
Chen Zhu
,
Bernard Ghanem
,
Gavin Taylor
,
Tom Goldstein
NeurIPSW
2021
A Closer Look at Distribution Shifts and Out-of-Distribution Generalization on Graphs
Mucong Ding
,
Kezhi Kong
,
Jiuhai Chen
,
John Kirchenbauer
,
Micah Goldblum
,
David Wipf
,
Furong Huang
,
Tom Goldstein
ICML
2021
Data Augmentation for Meta-Learning
Renkun Ni
,
Micah Goldblum
,
Amr Sharaf
,
Kezhi Kong
,
Tom Goldstein
NeurIPS
2021
GradInit: Learning to Initialize Neural Networks for Stable and Efficient Training
Chen Zhu
,
Renkun Ni
,
Zheng Xu
,
Kezhi Kong
,
W. Ronny Huang
,
Tom Goldstein
AAAI
2021
SHOT-VAE: Semi-Supervised Deep Generative Models with Label-Aware ELBO Approximations
Haozhe Feng
,
Kezhi Kong
,
Minghao Chen
,
Tianye Zhang
,
Minfeng Zhu
,
Wei Chen
NeurIPS
2021
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks Using Vector Quantization
Mucong Ding
,
Kezhi Kong
,
Jingling Li
,
Chen Zhu
,
John Dickerson
,
Furong Huang
,
Tom Goldstein