ML Anthology
Authors
Search
About
Konstantinov, Nikola
17 publications
ICLRW
2025
Measuring the Layer-Wise Impact of Image Shortcuts on Deep Model Features
Nikita Tsoy
,
Nikola Konstantinov
ICML
2025
On the Impact of Performative Risk Minimization for Binary Random Variables
Nikita Tsoy
,
Ivan Kirev
,
Negin Rahimiyazdi
,
Nikola Konstantinov
NeurIPSW
2024
Incentivizing Truthful Collaboration in Heterogeneous Federated Learning
Dimitar Chakarov
,
Nikita Tsoy
,
Kristian Minchev
,
Nikola Konstantinov
AISTATS
2024
Provable Mutual Benefits from Federated Learning in Privacy-Sensitive Domains
Nikita Tsoy
,
Anna Mihalkova
,
Teodora N Todorova
,
Nikola Konstantinov
ICML
2024
Simplicity Bias of Two-Layer Networks Beyond Linearly Separable Data
Nikita Tsoy
,
Nikola Konstantinov
ICLR
2023
Human-Guided Fair Classification for Natural Language Processing
Florian E. Dorner
,
Momchil Peychev
,
Nikola Konstantinov
,
Naman Goel
,
Elliott Ash
,
Martin Vechev
ICMLW
2023
Incentivizing Honesty Among Competitors in Collaborative Learning
Florian E. Dorner
,
Nikola Konstantinov
,
Georgi Stoyanov Pashaliev
,
Martin Vechev
NeurIPS
2023
Incentivizing Honesty Among Competitors in Collaborative Learning and Optimization
Florian E. Dorner
,
Nikola Konstantinov
,
Georgi Pashaliev
,
Martin Vechev
NeurIPS
2023
Strategic Data Sharing Between Competitors
Nikita Tsoy
,
Nikola Konstantinov
ICMLW
2023
Strategic Data Sharing Between Competitors
Nikita Tsoy
,
Nikola Konstantinov
TMLR
2022
Data Leakage in Federated Averaging
Dimitar Iliev Dimitrov
,
Mislav Balunovic
,
Nikola Konstantinov
,
Martin Vechev
TMLR
2022
FLEA: Provably Robust Fair Multisource Learning from Unreliable Training Data
Eugenia Iofinova
,
Nikola Konstantinov
,
Christoph H Lampert
JMLR
2022
Fairness-Aware PAC Learning from Corrupted Data
Nikola Konstantinov
,
Christoph H. Lampert
NeurIPSW
2022
Generating Intuitive Fairness Specifications for Natural Language Processing
Florian E. Dorner
,
Momchil Peychev
,
Nikola Konstantinov
,
Naman Goel
,
Elliott Ash
,
Martin Vechev
ICML
2020
On the Sample Complexity of Adversarial Multi-Source PAC Learning
Nikola Konstantinov
,
Elias Frantar
,
Dan Alistarh
,
Christoph Lampert
ICML
2019
Robust Learning from Untrusted Sources
Nikola Konstantinov
,
Christoph Lampert
NeurIPS
2018
The Convergence of Sparsified Gradient Methods
Dan Alistarh
,
Torsten Hoefler
,
Mikael Johansson
,
Nikola Konstantinov
,
Sarit Khirirat
,
Cedric Renggli