ML Anthology
Authors
Search
About
Kontorovich, Aryeh
48 publications
JMLR
2025
Distribution Estimation Under the Infinity Norm
Aryeh Kontorovich
,
Amichai Painsky
ALT
2025
Sharp Bounds on Aggregate Expert Error
Aryeh Kontorovich
,
Ariel Avital
ICML
2025
The Empirical Mean Is Minimax Optimal for Local Glivenko-Cantelli
Doron Cohen
,
Aryeh Kontorovich
,
Roi Weiss
ICML
2024
Agnostic Sample Compression Schemes for Regression
Idan Attias
,
Steve Hanneke
,
Aryeh Kontorovich
,
Menachem Sadigurschi
COLT
2024
Correlated Binomial Process
Moïse Blanchard
,
Doron Cohen
,
Aryeh Kontorovich
ALT
2024
Efficient Agnostic Learning with Average Smoothness
Steve Hanneke
,
Aryeh Kontorovich
,
Guy Kornowski
JMLR
2024
Fat-Shattering Dimension of K-Fold Aggregations
Idan Attias
,
Aryeh Kontorovich
JMLR
2024
Functions with Average Smoothness: Structure, Algorithms, and Learning
Yair Ashlagi
,
Lee-Ad Gottlieb
,
Aryeh Kontorovich
MLJ
2024
Nested Barycentric Coordinate System as an Explicit Feature mAP for Polyhedra Approximation and Learning Tasks
Lee-Ad Gottlieb
,
Eran Kaufman
,
Aryeh Kontorovich
,
Gabriel Nivasch
,
Ofir Pele
COLT
2023
Local Glivenko-Cantelli
Doron Cohen
,
Aryeh Kontorovich
NeurIPS
2023
Near-Optimal Learning with Average Hölder Smoothness
Guy Kornowski
,
Steve Hanneke
,
Aryeh Kontorovich
COLT
2023
Open Problem: Log(n) Factor in "Local Glivenko-Cantelli"
Doron Cohen
,
Aryeh Kontorovich
ICML
2022
Adaptive Data Analysis with Correlated Observations
Aryeh Kontorovich
,
Menachem Sadigurschi
,
Uri Stemmer
TMLR
2022
Domain Invariant Adversarial Learning
Matan Levi
,
Idan Attias
,
Aryeh Kontorovich
JMLR
2022
Improved Generalization Bounds for Adversarially Robust Learning
Idan Attias
,
Aryeh Kontorovich
,
Yishay Mansour
COLT
2022
Learning with Metric Losses
Dan Tsir Cohen
,
Aryeh Kontorovich
AISTATS
2021
Nested Barycentric Coordinate System as an Explicit Feature mAP
Lee-Ad Gottlieb
,
Eran Kaufman
,
Aryeh Kontorovich
,
Gabriel Nivasch
,
Ofir Pele
NeurIPS
2021
Dimension-Free Empirical Entropy Estimation
Doron Cohen
,
Aryeh Kontorovich
,
Aaron Koolyk
,
Geoffrey Wolfer
COLT
2021
Functions with Average Smoothness: Structure, Algorithms, and Learning
Yair Ashlagi
,
Lee-Ad Gottlieb
,
Aryeh Kontorovich
ALT
2021
Stable Sample Compression Schemes: New Applications and an Optimal SVM Margin Bound
Steve Hanneke
,
Aryeh Kontorovich
ALT
2020
Algorithmic Learning Theory 2020: Preface
Aryeh Kontorovich
,
Gergely Neu
AISTATS
2020
Fast and Bayes-Consistent Nearest Neighbors
Klim Efremenko
,
Aryeh Kontorovich
,
Moshe Noivirt
NeurIPS
2020
Learning Discrete Distributions with Infinite Support
Doron Cohen
,
Aryeh Kontorovich
,
Geoffrey Wolfer
AISTATS
2020
Minimax Testing of Identity to a Reference Ergodic Markov Chain
Geoffrey Wolfer
,
Aryeh Kontorovich
ALT
2019
A Sharp Lower Bound for Agnostic Learning with Sample Compression Schemes
Steve Hanneke
,
Aryeh Kontorovich
COLT
2019
Estimating the Mixing Time of Ergodic Markov Chains
Geoffrey Wolfer
,
Aryeh Kontorovich
ALT
2019
Improved Generalization Bounds for Robust Learning
Idan Attias
,
Aryeh Kontorovich
,
Yishay Mansour
ALT
2019
Minimax Learning of Ergodic Markov Chains
Geoffrey Wolfer
,
Aryeh Kontorovich
ALT
2019
Sample Compression for Real-Valued Learners
Steve Hanneke
,
Aryeh Kontorovich
,
Menachem Sadigurschi
AAAI
2019
Temporal Anomaly Detection: Calibrating the Surprise
Eyal Gutflaish
,
Aryeh Kontorovich
,
Sivan Sabato
,
Ofer Biller
,
Oded Sofer
NeurIPS
2018
Learning Convex Polytopes with Margin
Lee-Ad Gottlieb
,
Eran Kaufman
,
Aryeh Kontorovich
,
Gabriel Nivasch
NeurIPS
2017
Nearest-Neighbor Sample Compression: Efficiency, Consistency, Infinite Dimensions
Aryeh Kontorovich
,
Sivan Sabato
,
Roi Weiss
JMLR
2017
Nearly Optimal Classification for Semimetrics
Lee-Ad Gottlieb
,
Aryeh Kontorovich
,
Pinhas Nisnevitch
NeurIPS
2016
Active Nearest-Neighbor Learning in Metric Spaces
Aryeh Kontorovich
,
Sivan Sabato
,
Ruth Urner
AISTATS
2016
Nearly Optimal Classification for Semimetrics
Lee-Ad Gottlieb
,
Aryeh Kontorovich
,
Pinhas Nisnevitch
AISTATS
2015
A Bayes Consistent 1-NN Classifier
Aryeh Kontorovich
,
Roi Weiss
JMLR
2015
A Finite Sample Analysis of the Naive Bayes Classifier
Daniel Berend
,
Aryeh Kontorovich
NeurIPS
2015
Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path
Daniel J. Hsu
,
Aryeh Kontorovich
,
Csaba Szepesvari
ICML
2014
Concentration in Unbounded Metric Spaces and Algorithmic Stability
Aryeh Kontorovich
NeurIPS
2014
Consistency of Weighted Majority Votes
Daniel Berend
,
Aryeh Kontorovich
ICML
2014
Maximum Margin Multiclass Nearest Neighbors
Aryeh Kontorovich
,
Roi Weiss
NeurIPS
2014
Near-Optimal Sample Compression for Nearest Neighbors
Lee-Ad Gottlieb
,
Aryeh Kontorovich
,
Pinhas Nisnevitch
ALT
2013
Adaptive Metric Dimensionality Reduction
Lee-Ad Gottlieb
,
Aryeh Kontorovich
,
Robert Krauthgamer
MLJ
2013
Exploiting Label Dependencies for Improved Sample Complexity
Lena Chekina
,
Dan Gutfreund
,
Aryeh Kontorovich
,
Lior Rokach
,
Bracha Shapira
ICML
2013
On Learning Parametric-Output HMMs
Aryeh Kontorovich
,
Boaz Nadler
,
Roi Weiss
JMLR
2013
On the Learnability of Shuffle Ideals
Dana Angluin
,
James Aspnes
,
Sarah Eisenstat
,
Aryeh Kontorovich
NeurIPS
2013
Predictive PAC Learning and Process Decompositions
Cosma Shalizi
,
Aryeh Kontorovich
ALT
2012
On the Learnability of Shuffle Ideals
Dana Angluin
,
James Aspnes
,
Aryeh Kontorovich