Kratsios, Anastasis

18 publications

TMLR 2025 Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts Anastasis Kratsios, Haitz Sáez de Ocáriz Borde, Takashi Furuya, Marc T. Law
ICLR 2025 Filtered Not Mixed: Filtering-Based Online Gating for Mixture of Large Language Models Raeid Saqur, Anastasis Kratsios, Florian Krach, Yannick Limmer, Blanka Horvath, Frank Rudzicz
ICLRW 2025 Graph Low-Rank Adapters of High Regularity for Graph Neural Networks and Graph Transformers Pantelis Papageorgiou, Haitz Sáez de Ocáriz Borde, Anastasis Kratsios, Michael M. Bronstein
ICLR 2025 Neural Spacetimes for DAG Representation Learning Haitz Sáez de Ocáriz Borde, Anastasis Kratsios, Marc T. Law, Xiaowen Dong, Michael M. Bronstein
NeurIPS 2024 A Comprehensive Analysis on the Learning Curve in Kernel Ridge Regression Tin Sum Cheng, Aurelien Lucchi, Anastasis Kratsios, David Belius
ICML 2024 Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum Tin Sum Cheng, Aurelien Lucchi, Anastasis Kratsios, David Belius
NeurIPS 2024 Energy-Guided Continuous Entropic Barycenter Estimation for General Costs Alexander Kolesov, Petr Mokrov, Igor Udovichenko, Milena Gazdieva, Gudmund Pammer, Anastasis Kratsios, Evgeny Burnaev, Alexander Korotin
ICLR 2024 Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries Haitz Sáez de Ocáriz Borde, Anastasis Kratsios
NeurIPS 2023 A Theoretical Analysis of the Test Error of Finite-Rank Kernel Ridge Regression Tin Sum Cheng, Aurelien Lucchi, Anastasis Kratsios, Ivan Dokmanić, David Belius
TMLR 2023 Denise: Deep Robust Principal Component Analysis for Positive Semidefinite Matrices Calypso Herrera, Florian Krach, Anastasis Kratsios, Pierre Ruyssen, Josef Teichmann
JMLR 2023 Instance-Dependent Generalization Bounds via Optimal Transport Songyan Hou, Parnian Kassraie, Anastasis Kratsios, Andreas Krause, Jonas Rothfuss
JMLR 2023 Small Transformers Compute Universal Metric Embeddings Anastasis Kratsios, Valentin Debarnot, Ivan Dokmanić
TMLR 2022 Do ReLU Networks Have an Edge When Approximating Compactly-Supported Functions? Anastasis Kratsios, Behnoosh Zamanlooy
JMLR 2022 Universal Approximation Theorems for Differentiable Geometric Deep Learning Anastasis Kratsios, Léonie Papon
ICLR 2022 Universal Approximation Under Constraints Is Possible with Transformers Anastasis Kratsios, Behnoosh Zamanlooy, Tianlin Liu, Ivan Dokmanić
JMLR 2021 NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation Anastasis Kratsios, Cody Hyndman
COLT 2021 Optimizing Optimizers: Regret-Optimal Gradient Descent Algorithms Philippe Casgrain, Anastasis Kratsios
NeurIPS 2020 Non-Euclidean Universal Approximation Anastasis Kratsios, Ievgen Bilokopytov