Krause, Andreas

305 publications

TMLR 2026 From Words to Rewards: Leveraging Natural Language for Reinforcement Learning Belen Martin Urcelay, Andreas Krause, Giorgia Ramponi
ICLR 2025 ActSafe: Active Exploration with Safety Constraints for Reinforcement Learning Yarden As, Bhavya Sukhija, Lenart Treven, Carmelo Sferrazza, Stelian Coros, Andreas Krause
ICML 2025 Active Fine-Tuning of Multi-Task Policies Marco Bagatella, Jonas Hübotter, Georg Martius, Andreas Krause
AISTATS 2025 All Models Are Wrong, Some Are Useful: Model Selection with Limited Labels Patrik Okanovic, Andreas Kirsch, Jannes Kasper, Torsten Hoefler, Andreas Krause, Nezihe Merve Gürel
ICLR 2025 Composing Unbalanced Flows for Flexible Docking and Relaxation Gabriele Corso, Vignesh Ram Somnath, Noah Getz, Regina Barzilay, Tommi Jaakkola, Andreas Krause
NeurIPS 2025 DISCOVER: Automated Curricula for Sparse-Reward Reinforcement Learning Leander Diaz-Bone, Marco Bagatella, Jonas Hübotter, Andreas Krause
TMLR 2025 Directed Exploration in Reinforcement Learning from Linear Temporal Logic Marco Bagatella, Andreas Krause, Georg Martius
ICLR 2025 Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs Jonas Hübotter, Sascha Bongni, Ido Hakimi, Andreas Krause
NeurIPS 2025 Flow Density Control: Generative Optimization Beyond Entropy-Regularized Fine-Tuning Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, Andreas Krause
ICML 2025 Generative Intervention Models for Causal Perturbation Modeling Nora Schneider, Lars Lorch, Niki Kilbertus, Bernhard Schölkopf, Andreas Krause
AISTATS 2025 LITE: Efficiently Estimating Gaussian Probability of Maximality Nicolas Menet, Jonas Hübotter, Parnian Kassraie, Andreas Krause
ICML 2025 Learning Safety Constraints for Large Language Models Xin Chen, Yarden As, Andreas Krause
ICLR 2025 MaxInfoRL: Boosting Exploration in Reinforcement Learning Through Information Gain Maximization Bhavya Sukhija, Stelian Coros, Andreas Krause, Pieter Abbeel, Carmelo Sferrazza
ICLRW 2025 Optimism via Intrinsic Rewards: Scalable and Principled Exploration for Model-Based Reinforcement Learning Bhavya Sukhija, Lenart Treven, Carmelo Sferrazza, Florian Dorfler, Pieter Abbeel, Andreas Krause
ICLR 2025 Optimistic Games for Combinatorial Bayesian Optimization with Application to Protein Design Melis Ilayda Bal, Pier Giuseppe Sessa, Mojmir Mutny, Andreas Krause
TMLR 2025 Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach Mahrokh Ghoddousi Boroujeni, Andreas Krause, Giancarlo Ferrari-Trecate
ICML 2025 Provable Maximum Entropy Manifold Exploration via Diffusion Models Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, Andreas Krause
ICLRW 2025 Provable Maximum Entropy Manifold Exploration via Diffusion Models Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, Andreas Krause
ICLR 2025 Residual Deep Gaussian Processes on Manifolds Kacper Wyrwal, Andreas Krause, Viacheslav Borovitskiy
NeurIPS 2025 SHAP Values via Sparse Fourier Representation Ali Gorji, Andisheh Amrollahi, Andreas Krause
NeurIPS 2025 SOMBRL: Scalable and Optimistic Model-Based RL Bhavya Sukhija, Lenart Treven, Carmelo Sferrazza, Florian Dorfler, Pieter Abbeel, Andreas Krause
NeurIPS 2025 SPiDR: A Simple Approach for Zero-Shot Safety in Sim-to-Real Transfer Yarden As, Chengrui Qu, Benjamin Unger, Dongho Kang, Max van der Hart, Laixi Shi, Stelian Coros, Adam Wierman, Andreas Krause
NeurIPS 2025 SonoGym: High Performance Simulation for Challenging Surgical Tasks with Robotic Ultrasound Yunke Ao, Masoud Moghani, Mayank Mittal, Manish Prajapat, Luohong Wu, Frederic Giraud, Fabio Carrillo, Andreas Krause, Philipp Fürnstahl
ICLR 2025 Standardizing Structural Causal Models Weronika Ormaniec, Scott Sussex, Lars Lorch, Bernhard Schölkopf, Andreas Krause
ICLR 2024 Adversarial Causal Bayesian Optimization Scott Sussex, Pier Giuseppe Sessa, Anastasia Makarova, Andreas Krause
NeurIPS 2024 Bandits with Preference Feedback: A Stackelberg Game Perspective Barna Pásztor, Parnian Kassraie, Andreas Krause
ICMLW 2024 Bandits with Preference Feedback: A Stackelberg Game Perspective Barna Pásztor, Parnian Kassraie, Andreas Krause
ICMLW 2024 Bilevel Optimization with Lower-Level Contextual MDPs Vinzenz Thoma, Barna Pásztor, Andreas Krause, Giorgia Ramponi, Yifan Hu
AISTATS 2024 Causal Modeling with Stationary Diffusions Lars Lorch, Andreas Krause, Bernhard Schölkopf
NeurIPS 2024 Contextual Bilevel Reinforcement Learning for Incentive Alignment Vinzenz Thoma, Barna Pasztor, Andreas Krause, Giorgia Ramponi, Yifan Hu
JMLR 2024 Data Summarization via Bilevel Optimization Zalán Borsos, Mojmír Mutný, Marco Tagliasacchi, Andreas Krause
AISTATS 2024 Distributionally Robust Model-Based Reinforcement Learning with Large State Spaces Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, Ilija Bogunovic
NeurIPSW 2024 Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs Jonas Hübotter, Sascha Bongni, Ido Hakimi, Andreas Krause
NeurIPSW 2024 Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs Jonas Hübotter, Sascha Bongni, Ido Hakimi, Andreas Krause
NeurIPSW 2024 Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs Jonas Hübotter, Sascha Bongni, Ido Hakimi, Andreas Krause
ICMLW 2024 Flexible Docking via Unbalanced Flow Matching Gabriele Corso, Vignesh Ram Somnath, Noah Getz, Regina Barzilay, Tommi Jaakkola, Andreas Krause
ICMLW 2024 Flexible Docking via Unbalanced Flow Matching Gabriele Corso, Vignesh Ram Somnath, Noah Getz, Regina Barzilay, Tommi Jaakkola, Andreas Krause
ICML 2024 Geometric Active Exploration in Markov Decision Processes: The Benefit of Abstraction Riccardo De Santi, Federico Arangath Joseph, Noah Liniger, Mirco Mutti, Andreas Krause
ICML 2024 Global Reinforcement Learning : Beyond Linear and Convex Rewards via Submodular Semi-Gradient Methods Riccardo De Santi, Manish Prajapat, Andreas Krause
AISTATS 2024 Intrinsic Gaussian Vector Fields on Manifolds Daniel Robert-Nicoud, Andreas Krause, Viacheslav Borovitskiy
AISTATS 2024 Learning Safety Constraints from Demonstrations with Unknown Rewards David Lindner, Xin Chen, Sebastian Tschiatschek, Katja Hofmann, Andreas Krause
JMLR 2024 Log Barriers for Safe Black-Box Optimization with Application to Safe Reinforcement Learning Ilnura Usmanova, Yarden As, Maryam Kamgarpour, Andreas Krause
ICML 2024 Model-Based RL for Mean-Field Games Is Not Statistically Harder than Single-Agent RL Jiawei Huang, Niao He, Andreas Krause
ICMLW 2024 NEORL: Efficient Exploration for Nonepisodic RL Bhavya Sukhija, Lenart Treven, Florian Dorfler, Stelian Coros, Andreas Krause
NeurIPS 2024 NeoRL: Efficient Exploration for Nonepisodic RL Bhavya Sukhija, Lenart Treven, Florian Dörfler, Stelian Coros, Andreas Krause
ICMLW 2024 Reinforcement Learning from Human Text Feedback: Learning a Reward Model from Human Text Input Belen Martin Urcelay, Andreas Krause, Giorgia Ramponi
AISTATS 2024 Sinkhorn Flow as Mirror Flow: A Continuous-Time Framework for Generalizing the Sinkhorn Algorithm Mohammad Reza Karimi, Ya-Ping Hsieh, Andreas Krause
ICLR 2024 Submodular Reinforcement Learning Manish Prajapat, Mojmir Mutny, Melanie Zeilinger, Andreas Krause
ICMLW 2024 Transductive Active Learning with Application to Safe Bayesian Optimization Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden As, Andreas Krause
NeurIPS 2024 Transductive Active Learning: Theory and Applications Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden As, Andreas Krause
NeurIPS 2024 Transition Constrained Bayesian Optimization via Markov Decision Processes Jose Pablo Folch, Calvin Tsay, Robert M Lee, Behrang Shafei, Weronika Ormaniec, Andreas Krause, Mark van der Wilk, Ruth Misener, Mojmír Mutný
NeurIPS 2024 When to Sense and Control? a Time-Adaptive Approach for Continuous-Time RL Lenart Treven, Bhavya Sukhija, Yarden As, Florian Dörfler, Andreas Krause
ICMLW 2024 When to Sense and Control? a Time-Adaptive Approach for Continuous-Time RL Lenart Treven, Bhavya Sukhija, Yarden As, Florian Dorfler, Andreas Krause
NeurIPS 2023 A Dynamical System View of Langevin-Based Non-Convex Sampling Mohammad Reza Karimi Jaghargh, Ya-Ping Hsieh, Andreas Krause
UAI 2023 A Scalable Walsh-Hadamard Regularizer to Overcome the Low-Degree Spectral Bias of Neural Networks Ali Gorji, Andisheh Amrollahi, Andreas Krause
AISTATS 2023 Active Exploration via Experiment Design in Markov Chains Mojmir Mutny, Tadeusz Janik, Andreas Krause
UAI 2023 Aligned Diffusion Schrödinger Bridges Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh, Maria Rodriguez Martinez, Andreas Krause, Charlotte Bunne
ICMLW 2023 Aligned Diffusion Schrödinger Bridges Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh, Maria Rodriguez Martinez, Andreas Krause, Charlotte Bunne
NeurIPS 2023 Anytime Model Selection in Linear Bandits Parnian Kassraie, Nicolas Emmenegger, Andreas Krause, Aldo Pacchiano
NeurIPSW 2023 Anytime Model Selection in Linear Bandits Parnian Kassraie, Nicolas Emmenegger, Andreas Krause, Aldo Pacchiano
AISTATS 2023 BaCaDI: Bayesian Causal Discovery with Unknown Interventions Alexander Hägele, Jonas Rothfuss, Lars Lorch, Vignesh Ram Somnath, Bernhard Schölkopf, Andreas Krause
MLJ 2023 Bayesian Optimization with Safety Constraints: Safe and Automatic Parameter Tuning in Robotics Felix Berkenkamp, Andreas Krause, Angela P. Schoellig
NeurIPSW 2023 Causal Modeling with Stationary Diffusions Lars Lorch, Andreas Krause, Bernhard Schölkopf
NeurIPS 2023 Contextual Stochastic Bilevel Optimization Yifan Hu, Jie Wang, Yao Xie, Andreas Krause, Daniel Huhn
NeurIPSW 2023 Distributionally Robust Model-Based Reinforcement Learning with Large State Spaces Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, Ilija Bogunovic
NeurIPS 2023 Efficient Exploration in Continuous-Time Model-Based Reinforcement Learning Lenart Treven, Jonas Hübotter, Bhavya Sukhija, Florian Dorfler, Andreas Krause
TMLR 2023 Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning Barna Pásztor, Andreas Krause, Ilija Bogunovic
NeurIPSW 2023 Graph Neural Bayesian Optimization for Virtual Screening Miles Wang-Henderson, Bartu Soyuer, Parnian Kassraie, Andreas Krause, Ilija Bogunovic
NeurIPSW 2023 Graph Neural Bayesian Optimization for Virtual Screening Miles Wang-Henderson, Bartu Soyuer, Parnian Kassraie, Andreas Krause, Ilija Bogunovic
ICMLW 2023 Graph Neural Network Powered Bayesian Optimization for Large Molecular Spaces Miles Wang-Henderson, Bartu Soyuer, Parnian Kassraie, Andreas Krause, Ilija Bogunovic
UAI 2023 Hallucinated Adversarial Control for Conservative Offline Policy Evaluation Jonas Rothfuss, Bhavya Sukhija, Tobias Birchler, Parnian Kassraie, Andreas Krause
NeurIPS 2023 Implicit Manifold Gaussian Process Regression Bernardo Fichera, Slava Borovitskiy, Andreas Krause, Aude G Billard
JMLR 2023 Instance-Dependent Generalization Bounds via Optimal Transport Songyan Hou, Parnian Kassraie, Anastasis Kratsios, Andreas Krause, Jonas Rothfuss
AISTATS 2023 Isotropic Gaussian Processes on Finite Spaces of Graphs Viacheslav Borovitskiy, Mohammad Reza Karimi, Vignesh Ram Somnath, Andreas Krause
NeurIPS 2023 Learning to Dive in Branch and Bound Max Paulus, Andreas Krause
TMLR 2023 Leveraging Demonstrations with Latent Space Priors Jonas Gehring, Deepak Gopinath, Jungdam Won, Andreas Krause, Gabriel Synnaeve, Nicolas Usunier
UAI 2023 Lifelong Bandit Optimization: No Prior and No Regret Felix Schur, Parnian Kassraie, Jonas Rothfuss, Andreas Krause
NeurIPS 2023 Likelihood Ratio Confidence Sets for Sequential Decision Making Nicolas Emmenegger, Mojmir Mutny, Andreas Krause
JMLR 2023 Linear Partial Monitoring for Sequential Decision Making: Algorithms, Regret Bounds and Applications Johannes Kirschner, Tor Lattimore, Andreas Krause
ICLR 2023 MARS: Meta-Learning as Score Matching in the Function Space Krunoslav Lehman Pavasovic, Jonas Rothfuss, Andreas Krause
ICLR 2023 Model-Based Causal Bayesian Optimization Scott Sussex, Anastasia Makarova, Andreas Krause
NeurIPS 2023 Multitask Learning with No Regret: From Improved Confidence Bounds to Active Learning Pier Giuseppe Sessa, Pierre Laforgue, Nicolò Cesa-Bianchi, Andreas Krause
ICLR 2023 Near-Optimal Policy Identification in Active Reinforcement Learning Xiang Li, Viraj Mehta, Johannes Kirschner, Ian Char, Willie Neiswanger, Jeff Schneider, Andreas Krause, Ilija Bogunovic
NeurIPS 2023 Optimistic Active Exploration of Dynamical Systems Bhavya Sukhija, Lenart Treven, Cansu Sancaktar, Sebastian Blaes, Stelian Coros, Andreas Krause
NeurIPSW 2023 Optimistic Games for Combinatorial Bayesian Optimization with Applications to Protein Design Melis Ilayda Bal, Pier Giuseppe Sessa, Mojmir Mutny, Andreas Krause
ICLR 2023 Replicable Bandits Hossein Esfandiari, Alkis Kalavasis, Amin Karbasi, Andreas Krause, Vahab Mirrokni, Grigoris Velegkas
NeurIPS 2023 Riemannian Stochastic Optimization Methods Avoid Strict Saddle Points Ya-Ping Hsieh, Mohammad Reza Karimi Jaghargh, Andreas Krause, Panayotis Mertikopoulos
JMLR 2023 Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice Jonas Rothfuss, Martin Josifoski, Vincent Fortuin, Andreas Krause
NeurIPS 2023 Stochastic Approximation Algorithms for Systems of Interacting Particles Mohammad Reza Karimi Jaghargh, Ya-Ping Hsieh, Andreas Krause
AISTATS 2023 The Schrödinger Bridge Between Gaussian Measures Has a Closed Form Charlotte Bunne, Ya-Ping Hsieh, Marco Cuturi, Andreas Krause
CoRL 2023 Tuning Legged Locomotion Controllers via Safe Bayesian Optimization Daniel Widmer, Dongho Kang, Bhavya Sukhija, Jonas Hübotter, Andreas Krause, Stelian Coros
ICMLW 2023 Unbalanced Diffusion Schrödinger Bridge Matteo Pariset, Ya-Ping Hsieh, Charlotte Bunne, Andreas Krause, Valentin De Bortoli
AISTATS 2022 Diversified Sampling for Batched Bayesian Optimization with Determinantal Point Processes Elvis Nava, Mojmir Mutny, Andreas Krause
AISTATS 2022 Neural Contextual Bandits Without Regret Parnian Kassraie, Andreas Krause
AISTATS 2022 Proximal Optimal Transport Modeling of Population Dynamics Charlotte Bunne, Laetitia Papaxanthos, Andreas Krause, Marco Cuturi
AISTATS 2022 Sensing Cox Processes via Posterior Sampling and Positive Bases Mojmir Mutny, Andreas Krause
NeurIPS 2022 A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian Process Bandits Ilija Bogunovic, Zihan Li, Andreas Krause, Jonathan Scarlett
NeurIPS 2022 Active Bayesian Causal Inference Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert Peharz, Julius von Kügelgen
NeurIPSW 2022 Active Bayesian Causal Inference Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert Peharz, Julius Von Kügelgen
NeurIPSW 2022 Active Bayesian Causal Inference Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert Peharz, Julius Von Kügelgen
NeurIPS 2022 Active Exploration for Inverse Reinforcement Learning David Lindner, Andreas Krause, Giorgia Ramponi
ICML 2022 Adaptive Gaussian Process Change Point Detection Edoardo Caldarelli, Philippe Wenk, Stefan Bauer, Andreas Krause
NeurIPS 2022 Amortized Inference for Causal Structure Learning Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause, Bernhard Schölkopf
NeurIPSW 2022 Amortized Inference for Causal Structure Learning Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause, Bernhard Schölkopf
AutoML 2022 Automatic Termination for Hyperparameter Optimization Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas Krause, Matthias Seeger, Cedric Archambeau
ICLR 2022 Constrained Policy Optimization via Bayesian World Models Yarden As, Ilnura Usmanova, Sebastian Curi, Andreas Krause
ICML 2022 Efficient Model-Based Multi-Agent Reinforcement Learning via Optimistic Equilibrium Computation Pier Giuseppe Sessa, Maryam Kamgarpour, Andreas Krause
ICLR 2022 Energy-Based Learning for Cooperative Games, with Applications to Valuation Problems in Machine Learning Yatao Bian, Yu Rong, Tingyang Xu, Jiaxiang Wu, Andreas Krause, Junzhou Huang
NeurIPS 2022 Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces Mojmir Mutny, Andreas Krause
NeurIPS 2022 Graph Neural Network Bandits Parnian Kassraie, Andreas Krause, Ilija Bogunovic
ICLR 2022 Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian, Regina Barzilay, Tommi S. Jaakkola, Andreas Krause
ICML 2022 Interactively Learning Preference Constraints in Linear Bandits David Lindner, Sebastian Tschiatschek, Katja Hofmann, Andreas Krause
NeurIPS 2022 Learning Long-Term Crop Management Strategies with CyclesGym Matteo Turchetta, Luca Corinzia, Scott Sussex, Amanda Burton, Juan Herrera, Ioannis Athanasiadis, Joachim M Buhmann, Andreas Krause
ICML 2022 Learning to Cut by Looking Ahead: Cutting Plane Selection via Imitation Learning Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, Chris Maddison
NeurIPSW 2022 MARS: Meta-Learning as Score Matching in the Function Space Krunoslav Lehman Pavasovic, Jonas Rothfuss, Andreas Krause
ICML 2022 Meta-Learning Hypothesis Spaces for Sequential Decision-Making Parnian Kassraie, Jonas Rothfuss, Andreas Krause
CoRL 2022 Meta-Learning Priors for Safe Bayesian Optimization Jonas Rothfuss, Christopher Koenig, Alisa Rupenyan, Andreas Krause
NeurIPS 2022 Movement Penalized Bayesian Optimization with Application to Wind Energy Systems Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Andreas Krause, Ilija Bogunovic
NeurIPS 2022 Near-Optimal Multi-Agent Learning for Safe Coverage Control Manish Prajapat, Matteo Turchetta, Melanie Zeilinger, Andreas Krause
NeurIPSW 2022 Neural All-Pairs Shortest Path for Reinforcement Learning Cristina Pinneri, Georg Martius, Andreas Krause
NeurIPS 2022 Supervised Training of Conditional Monge Maps Charlotte Bunne, Andreas Krause, Marco Cuturi
COLT 2022 The Dynamics of Riemannian Robbins-Monro Algorithms Mohammad Reza Karimi, Ya-Ping Hsieh, Panayotis Mertikopoulos, Andreas Krause
AISTATS 2021 Logistic Q-Learning Joan Bas-Serrano, Sebastian Curi, Andreas Krause, Gergely Neu
AISTATS 2021 Online Active Model Selection for Pre-Trained Classifiers Mohammad Reza Karimi, Nezihe Merve Gürel, Bojan Karlaš, Johannes Rausch, Ce Zhang, Andreas Krause
AISTATS 2021 Stochastic Linear Bandits Robust to Adversarial Attacks Ilija Bogunovic, Arpan Losalka, Andreas Krause, Jonathan Scarlett
IJCAI 2021 Addressing the Long-Term Impact of ML Decisions via Policy Regret David Lindner, Hoda Heidari, Andreas Krause
ICML 2021 Bias-Robust Bayesian Optimization via Dueling Bandits Johannes Kirschner, Andreas Krause
ICCV 2021 Cherry-Picking Gradients: Learning Low-Rank Embeddings of Visual Data via Differentiable Cross-Approximation Mikhail Usvyatsov, Anastasia Makarova, Rafael Ballester-Ripoll, Maxim Rakhuba, Andreas Krause, Konrad Schindler
ICML 2021 Combining Pessimism with Optimism for Robust and Efficient Model-Based Deep Reinforcement Learning Sebastian Curi, Ilija Bogunovic, Andreas Krause
NeurIPS 2021 DiBS: Differentiable Bayesian Structure Learning Lars Lorch, Jonas Rothfuss, Bernhard Schölkopf, Andreas Krause
NeurIPS 2021 Distributional Gradient Matching for Learning Uncertain Neural Dynamics Models Lenart Treven, Philippe Wenk, Florian Dorfler, Andreas Krause
ALT 2021 Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit Feedback Marc Jourdan, Mojmír Mutný, Johannes Kirschner, Andreas Krause
ICML 2021 Fast Projection onto Convex Smooth Constraints Ilnura Usmanova, Maryam Kamgarpour, Andreas Krause, Kfir Levy
NeurIPS 2021 Hierarchical Skills for Efficient Exploration Jonas Gehring, Gabriel Synnaeve, Andreas Krause, Nicolas Usunier
NeurIPS 2021 Information Directed Reward Learning for Reinforcement Learning David Lindner, Matteo Turchetta, Sebastian Tschiatschek, Kamil Ciosek, Andreas Krause
NeurIPS 2021 Learning Graph Models for Retrosynthesis Prediction Vignesh Ram Somnath, Charlotte Bunne, Connor Coley, Andreas Krause, Regina Barzilay
AAAI 2021 Learning Set Functions That Are Sparse in Non-Orthogonal Fourier Bases Chris Wendler, Andisheh Amrollahi, Bastian Seifert, Andreas Krause, Markus Püschel
L4DC 2021 Learning Stabilizing Controllers for Unstable Linear Quadratic Regulators from a Single Trajectory Lenart Treven, Sebastian Curi, Mojmír Mutný, Andreas Krause
NeurIPS 2021 Learning Stable Deep Dynamics Models for Partially Observed or Delayed Dynamical Systems Andreas Schlaginhaufen, Philippe Wenk, Andreas Krause, Florian Dorfler
NeurIPS 2021 Meta-Learning Reliable Priors in the Function Space Jonas Rothfuss, Dominique Heyn, Jinfan Chen, Andreas Krause
NeurIPSW 2021 Meta-Learning Reliable Priors in the Function Space Jonas Rothfuss, Dominique Heyn, Jinfan Chen, Andreas Krause
NeurIPS 2021 Misspecified Gaussian Process Bandit Optimization Ilija Bogunovic, Andreas Krause
NeurIPS 2021 Multi-Scale Representation Learning on Proteins Vignesh Ram Somnath, Charlotte Bunne, Andreas Krause
NeurIPS 2021 Near-Optimal Multi-Perturbation Experimental Design for Causal Structure Learning Scott Sussex, Caroline Uhler, Andreas Krause
ICML 2021 No-Regret Algorithms for Capturing Events in Poisson Point Processes Mojmir Mutny, Andreas Krause
ICML 2021 Online Submodular Resource Allocation with Applications to Rebalancing Shared Mobility Systems Pier Giuseppe Sessa, Ilija Bogunovic, Andreas Krause, Maryam Kamgarpour
ICML 2021 PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees Jonas Rothfuss, Vincent Fortuin, Martin Josifoski, Andreas Krause
ICML 2021 PopSkipJump: Decision-Based Attack for Probabilistic Classifiers Carl-Johann Simon-Gabriel, Noman Ahmed Sheikh, Andreas Krause
ICLR 2021 Rao-Blackwellizing the Straight-Through Gumbel-SoftMax Gradient Estimator Max B Paulus, Chris J. Maddison, Andreas Krause
NeurIPS 2021 Regret Bounds for Gaussian-Process Optimization in Large Domains Manuel Wuethrich, Bernhard Schölkopf, Andreas Krause
NeurIPS 2021 Risk-Averse Heteroscedastic Bayesian Optimization Anastasia Makarova, Ilnura Usmanova, Ilija Bogunovic, Andreas Krause
ICLR 2021 Risk-Averse Offline Reinforcement Learning Núria Armengol Urpí, Sebastian Curi, Andreas Krause
NeurIPS 2021 Robust Generalization Despite Distribution Shift via Minimum Discriminating Information Tobias Sutter, Andreas Krause, Daniel Huhn
NeurIPS 2020 Adaptive Sampling for Stochastic Risk-Averse Learning Sebastian Curi, Kfir Y. Levy, Stefanie Jegelka, Andreas Krause
NeurIPS 2020 Contextual Games: Multi-Agent Learning with Side Information Pier Giuseppe Sessa, Ilija Bogunovic, Andreas Krause, Maryam Kamgarpour
AISTATS 2020 Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling Mojmir Mutny, Michal Derezinski, Andreas Krause
NeurIPS 2020 Coresets via Bilevel Optimization for Continual Learning and Streaming Zalán Borsos, Mojmir Mutny, Andreas Krause
AISTATS 2020 Corruption-Tolerant Gaussian Process Bandit Optimization Ilija Bogunovic, Andreas Krause, Jonathan Scarlett
AISTATS 2020 Distributionally Robust Bayesian Optimization Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, Andreas Krause
NeurIPS 2020 Efficient Model-Based Reinforcement Learning Through Optimistic Policy Search and Planning Sebastian Curi, Felix Berkenkamp, Andreas Krause
AAAI 2020 Experimental Design for Optimization of Orthogonal Projection Pursuit Models Mojmir Mutny, Johannes Kirschner, Andreas Krause
ICML 2020 From Sets to Multisets: Provable Variational Inference for Probabilistic Integer Submodular Models Aytunc Sahin, Yatao Bian, Joachim Buhmann, Andreas Krause
NeurIPS 2020 Gradient Estimation with Stochastic SoftMax Tricks Max Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, Chris J Maddison
CVPRW 2020 Hierarchical Image Classification Using Entailment Cone Embeddings Ankit Dhall, Anastasia Makarova, Octavian Ganea, Dario Pavllo, Michael Greeff, Andreas Krause
COLT 2020 Information Directed Sampling for Linear Partial Monitoring Johannes Kirschner, Tor Lattimore, Andreas Krause
NeurIPS 2020 Learning to Play Sequential Games Versus Unknown Opponents Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause
AISTATS 2020 Mixed Strategies for Robust Optimization of Unknown Objectives Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause
IJCAI 2020 Mixed-Variable Bayesian Optimization Erik A. Daxberger, Anastasia Makarova, Matteo Turchetta, Andreas Krause
JMLR 2020 Multi-Player Bandits: The Adversarial Case Pragnya Alatur, Kfir Y. Levy, Andreas Krause
AAAI 2020 ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems Philippe Wenk, Gabriele Abbati, Michael A. Osborne, Bernhard Schölkopf, Andreas Krause, Stefan Bauer
ICMLW 2020 PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees Jonas Rothfuss, Vincent Fortuin, Andreas Krause
L4DC 2020 Safe Non-Smooth Black-Box Optimization with Application to Policy Search Ilnura Usmanova, Andreas Krause, Maryam Kamgarpour
NeurIPS 2020 Safe Reinforcement Learning via Curriculum Induction Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, Alekh Agarwal
L4DC 2020 Structured Variational Inference in Partially Observable Unstable Gaussian Process State Space Models Sebastian Curi, Silvan Melchior, Felix Berkenkamp, Andreas Krause
NeurIPS 2019 A Domain Agnostic Measure for Monitoring and Evaluating GANs Paulina Grnarova, Kfir Y. Levy, Aurelien Lucchi, Nathanael Perraudin, Ian Goodfellow, Thomas Hofmann, Andreas Krause
ICML 2019 AReS and MaRS Adversarial and MMD-Minimizing Regression for SDEs Gabriele Abbati, Philippe Wenk, Michael A. Osborne, Andreas Krause, Bernhard Schölkopf, Stefan Bauer
NeurIPS 2019 Adaptive Sequence Submodularity Marko Mitrovic, Ehsan Kazemi, Moran Feldman, Andreas Krause, Amin Karbasi
ICML 2019 Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces Johannes Kirschner, Mojmir Mutny, Nicole Hiller, Rasmus Ischebeck, Andreas Krause
AISTATS 2019 Bounding Inefficiency of Equilibria in Continuous Actions Games Using Submodularity and Curvature Pier Giuseppe Sessa, Maryam Kamgarpour, Andreas Krause
AISTATS 2019 Consistent Online Optimization: Convex and Submodular Mohammad Reza Karimi Jaghargh, Andreas Krause, Silvio Lattanzi, Sergei Vassilvtiskii
NeurIPS 2019 Efficiently Learning Fourier Sparse Set Functions Andisheh Amrollahi, Amir Zandieh, Michael Kapralov, Andreas Krause
AISTATS 2019 Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs Philippe Wenk, Alkis Gotovos, Stefan Bauer, Nico S. Gorbach, Andreas Krause, Joachim M. Buhmann
ICLR 2019 Information-Directed Exploration for Deep Reinforcement Learning Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, Andreas Krause
ICML 2019 Learning Generative Models Across Incomparable Spaces Charlotte Bunne, David Alvarez-Melis, Andreas Krause, Stefanie Jegelka
JMLR 2019 No-Regret Bayesian Optimization with Unknown Hyperparameters Felix Berkenkamp, Angela P. Schoellig, Andreas Krause
NeurIPS 2019 No-Regret Learning in Unknown Games with Correlated Payoffs Pier Giuseppe Sessa, Ilija Bogunovic, Maryam Kamgarpour, Andreas Krause
ICML 2019 Online Variance Reduction with Mixtures Zalán Borsos, Sebastian Curi, Kfir Yehuda Levy, Andreas Krause
ICML 2019 Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference Yatao Bian, Joachim Buhmann, Andreas Krause
AISTATS 2019 Projection Free Online Learning over Smooth Sets Kfir Levy, Andreas Krause
IJCAI 2019 Safe Contextual Bayesian Optimization for Sustainable Room Temperature PID Control Tuning Marcello Fiducioso, Sebastian Curi, Benedikt Schumacher, Markus Gwerder, Andreas Krause
AISTATS 2019 Safe Convex Learning Under Uncertain Constraints Ilnura Usmanova, Andreas Krause, Maryam Kamgarpour
NeurIPS 2019 Safe Exploration for Interactive Machine Learning Matteo Turchetta, Felix Berkenkamp, Andreas Krause
NeurIPS 2019 Stochastic Bandits with Context Distributions Johannes Kirschner, Andreas Krause
NeurIPS 2019 Teaching Multiple Concepts to a Forgetful Learner Anette Hunziker, Yuxin Chen, Oisin Mac Aodha, Manuel Gomez Rodriguez, Andreas Krause, Pietro Perona, Yisong Yue, Adish Singla
ICLR 2018 An Online Learning Approach to Generative Adversarial Networks Paulina Grnarova, Kfir Y Levy, Aurelien Lucchi, Thomas Hofmann, Andreas Krause
IJCAI 2018 Differentiable Submodular Maximization Sebastian Tschiatschek, Aytunc Sahin, Andreas Krause
UAI 2018 Discrete Sampling Using Semigradient-Based Product Mixtures Alkis Gotovos, S. Hamed Hassani, Andreas Krause, Stefanie Jegelka
NeurIPS 2018 Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features Mojmir Mutny, Andreas Krause
NeurIPS 2018 Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making Hoda Heidari, Claudio Ferrari, Krishna Gummadi, Andreas Krause
AAAI 2018 Incentive-Compatible Forecasting Competitions Jens Witkowski, Rupert Freeman, Jennifer Wortman Vaughan, David M. Pennock, Andreas Krause
COLT 2018 Information Directed Sampling and Bandits with Heteroscedastic Noise Johannes Kirschner, Andreas Krause
AAAI 2018 Information Gathering with Peers: Submodular Optimization with Peer-Prediction Constraints Goran Radanovic, Adish Singla, Andreas Krause, Boi Faltings
AAAI 2018 Learning User Preferences to Incentivize Exploration in the Sharing Economy Christoph Hirnschall, Adish Singla, Sebastian Tschiatschek, Andreas Krause
AAAI 2018 Learning to Interact with Learning Agents Adish Singla, Seyed Hamed Hassani, Andreas Krause
COLT 2018 Online Variance Reduction for Stochastic Optimization Zalan Borsos, Andreas Krause, Kfir Y. Levy
IJCAI 2018 Preventing Disparate Treatment in Sequential Decision Making Hoda Heidari, Andreas Krause
NeurIPS 2018 Provable Variational Inference for Constrained Log-Submodular Models Josip Djolonga, Stefanie Jegelka, Andreas Krause
AAAI 2018 Streaming Non-Monotone Submodular Maximization: Personalized Video Summarization on the Fly Baharan Mirzasoleiman, Stefanie Jegelka, Andreas Krause
AISTATS 2018 Submodularity on Hypergraphs: From Sets to Sequences Marko Mitrovic, Moran Feldman, Andreas Krause, Amin Karbasi
CoRL 2018 The Lyapunov Neural Network: Adaptive Stability Certification for Safe Learning of Dynamical Systems Spencer M. Richards, Felix Berkenkamp, Andreas Krause
NeurIPS 2017 Continuous DR-Submodular Maximization: Structure and Algorithms An Bian, Kfir Levy, Andreas Krause, Joachim M Buhmann
ICML 2017 Deletion-Robust Submodular Maximization: Data Summarization with “the Right to Be Forgotten” Baharan Mirzasoleiman, Amin Karbasi, Andreas Krause
NeurIPS 2017 Differentiable Learning of Submodular Models Josip Djolonga, Andreas Krause
ICML 2017 Differentially Private Submodular Maximization: Data Summarization in Disguise Marko Mitrovic, Mark Bun, Andreas Krause, Amin Karbasi
ICML 2017 Distributed and Provably Good Seedings for K-Means in Constant Rounds Olivier Bachem, Mario Lucic, Andreas Krause
UAI 2017 Efficient Online Learning for Optimizing Value of Information: Theory and Application to Interactive Troubleshooting Yuxin Chen, Jean-Michel Renders, Morteza Haghir Chehreghani, Andreas Krause
AISTATS 2017 Guaranteed Non-Convex Optimization: Submodular Maximization over Continuous Domains Andrew An Bian, Baharan Mirzasoleiman, Joachim M. Buhmann, Andreas Krause
ICML 2017 Guarantees for Greedy Maximization of Non-Submodular Functions with Applications Andrew An Bian, Joachim M. Buhmann, Andreas Krause, Sebastian Tschiatschek
UAI 2017 Improving Optimization-Based Approximate Inference by Clamping Variables Junyao Zhao, Josip Djolonga, Sebastian Tschiatschek, Andreas Krause
NeurIPS 2017 Interactive Submodular Bandit Lin Chen, Andreas Krause, Amin Karbasi
AISTATS 2017 Near-Optimal Bayesian Active Learning with Correlated and Noisy Tests Yuxin Chen, Seyed Hamed Hassani, Andreas Krause
ICML 2017 Probabilistic Submodular Maximization in Sub-Linear Time Serban Stan, Morteza Zadimoghaddam, Andreas Krause, Amin Karbasi
AAAI 2017 Proper Proxy Scoring Rules Jens Witkowski, Pavel Atanasov, Lyle H. Ungar, Andreas Krause
NeurIPS 2017 Safe Model-Based Reinforcement Learning with Stability Guarantees Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, Andreas Krause
AAAI 2017 Selecting Sequences of Items via Submodular Maximization Sebastian Tschiatschek, Adish Singla, Andreas Krause
NeurIPS 2017 Stochastic Submodular Maximization: The Case of Coverage Functions Mohammad Karimi, Mario Lucic, Hamed Hassani, Andreas Krause
ICML 2017 Uniform Deviation Bounds for K-Means Clustering Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause
ICML 2016 Actively Learning Hemimetrics with Applications to Eliciting User Preferences Adish Singla, Sebastian Tschiatschek, Andreas Krause
AAAI 2016 Approximate K-Means++ in Sublinear Time Olivier Bachem, Mario Lucic, S. Hamed Hassani, Andreas Krause
NeurIPS 2016 Cooperative Graphical Models Josip Djolonga, Stefanie Jegelka, Sebastian Tschiatschek, Andreas Krause
JMLR 2016 Distributed Submodular Maximization Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, Andreas Krause
JMLR 2016 E-PAL: An Active Learning Approach to the Multi-Objective Optimization Problem Marcela Zuluaga, Andreas Krause, Markus Püschel
NeurIPS 2016 Fast and Provably Good Seedings for K-Means Olivier Bachem, Mario Lucic, Hamed Hassani, Andreas Krause
ICML 2016 Horizontally Scalable Submodular Maximization Mario Lucic, Olivier Bachem, Morteza Zadimoghaddam, Andreas Krause
AISTATS 2016 Learning Probabilistic Submodular Diversity Models via Noise Contrastive Estimation Sebastian Tschiatschek, Josip Djolonga, Andreas Krause
AISTATS 2016 Learning Sparse Additive Models with Interactions in High Dimensions Hemant Tyagi, Anastasios Kyrillidis, Bernd Gärtner, Andreas Krause
ICML 2016 Learning Sparse Combinatorial Representations via Two-Stage Submodular Maximization Eric Balkanski, Baharan Mirzasoleiman, Andreas Krause, Yaron Singer
IJCAI 2016 Linear-Time Outlier Detection via Sensitivity Mario Lucic, Olivier Bachem, Andreas Krause
AAAI 2016 Noisy Submodular Maximization via Adaptive Sampling with Applications to Crowdsourced Image Collection Summarization Adish Singla, Sebastian Tschiatschek, Andreas Krause
NeurIPS 2016 Safe Exploration in Finite Markov Decision Processes with Gaussian Processes Matteo Turchetta, Felix Berkenkamp, Andreas Krause
AISTATS 2016 Strong Coresets for Hard and Soft Bregman Clustering with Applications to Exponential Family Mixtures Mario Lucic, Olivier Bachem, Andreas Krause
ECCV 2016 Suggesting Sounds for Images from Video Collections Matthias Solèr, Jean-Charles Bazin, Oliver Wang, Andreas Krause, Alexander Sorkine-Hornung
ECCVW 2016 Suggesting Sounds for Images from Video Collections Matthias Solèr, Jean-Charles Bazin, Oliver Wang, Andreas Krause, Alexander Sorkine-Hornung
NeurIPS 2016 Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, Volkan Cevher
NeurIPS 2016 Variational Inference in Mixed Probabilistic Submodular Models Josip Djolonga, Sebastian Tschiatschek, Andreas Krause
IJCAI 2015 Building Hierarchies of Concepts via Crowdsourcing Yuyin Sun, Adish Singla, Dieter Fox, Andreas Krause
ICML 2015 Coresets for Nonparametric Estimation - The Case of DP-Means Olivier Bachem, Mario Lucic, Andreas Krause
NeurIPS 2015 Distributed Submodular Cover: Succinctly Summarizing Massive Data Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, Andreas Krause
ICCV 2015 Higher-Order Inference for Multi-Class Log-Supermodular Models Jian Zhang, Josip Djolonga, Andreas Krause
AAAI 2015 Incentivizing Users for Balancing Bike Sharing Systems Adish Singla, Marco Santoni, Gábor Bartók, Pratik Mukerji, Moritz Meenen, Andreas Krause
IJCAI 2015 Information Gathering in Networks via Active Exploration Adish Singla, Eric Horvitz, Pushmeet Kohli, Ryen White, Andreas Krause
AAAI 2015 Lazier than Lazy Greedy Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, Andreas Krause
IJCAI 2015 Non-Monotone Adaptive Submodular Maximization Alkis Gotovos, Amin Karbasi, Andreas Krause
ICML 2015 Safe Exploration for Optimization with Gaussian Processes Yanan Sui, Alkis Gotovos, Joel Burdick, Andreas Krause
NeurIPS 2015 Sampling from Probabilistic Submodular Models Alkis Gotovos, Hamed Hassani, Andreas Krause
ICML 2015 Scalable Variational Inference in Log-Supermodular Models Josip Djolonga, Andreas Krause
COLT 2015 Sequential Information Maximization: When Is Greedy Near-Optimal? Yuxin Chen, S. Hamed Hassani, Amin Karbasi, Andreas Krause
AAAI 2015 Submodular Surrogates for Value of Information Yuxin Chen, Shervin Javdani, Amin Karbasi, J. Andrew Bagnell, Siddhartha S. Srinivasa, Andreas Krause
AISTATS 2015 Tradeoffs for Space, Time, Data and Risk in Unsupervised Learning Mario Lucic, Mesrob I. Ohannessian, Amin Karbasi, Andreas Krause
ICML 2014 Active Detection via Adaptive Submodularity Yuxin Chen, Hiroaki Shioi, Cesar Fuentes Montesinos, Lian Pin Koh, Serge Wich, Andreas Krause
NeurIPS 2014 Efficient Partial Monitoring with Prior Information Hastagiri P Vanchinathan, Gábor Bartók, Andreas Krause
NeurIPS 2014 Efficient Sampling for Learning Sparse Additive Models in High Dimensions Hemant Tyagi, Bernd Gärtner, Andreas Krause
NeurIPS 2014 From MAP to Marginals: Variational Inference in Bayesian Submodular Models Josip Djolonga, Andreas Krause
AISTATS 2014 Near Optimal Bayesian Active Learning for Decision Making Shervin Javdani, Yuxin Chen, Amin Karbasi, Andreas Krause, Drew Bagnell, Siddhartha S. Srinivasa
ICML 2014 Near-Optimally Teaching the Crowd to Classify Adish Singla, Ilija Bogunovic, Gabor Bartok, Amin Karbasi, Andreas Krause
JMLR 2014 Parallelizing Exploration-Exploitation Tradeoffs in Gaussian Process Bandit Optimization Thomas Desautels, Andreas Krause, Joel W. Burdick
IJCAI 2013 Active Learning for Level Set Estimation Alkis Gotovos, Nathalie Casati, Gregory Hitz, Andreas Krause
ICML 2013 Active Learning for Multi-Objective Optimization Marcela Zuluaga, Guillaume Sergent, Andreas Krause, Markus Püschel
NeurIPS 2013 Distributed Submodular Maximization: Identifying Representative Elements in Massive Data Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, Andreas Krause
NeurIPS 2013 High-Dimensional Gaussian Process Bandits Josip Djolonga, Andreas Krause, Volkan Cevher
ICML 2013 Near-Optimal Batch Mode Active Learning and Adaptive Submodular Optimization Yuxin Chen, Andreas Krause
ICML 2012 Joint Optimization and Variable Selection of High-Dimensional Gaussian Processes Bo Chen, Rui M. Castro, Andreas Krause
AISTATS 2012 Learning Fourier Sparse Set Functions Peter Stobbe, Andreas Krause
ICML 2012 Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization Thomas Desautels, Andreas Krause, Joel W. Burdick
JAIR 2011 Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization Daniel Golovin, Andreas Krause
NeurIPS 2011 Contextual Gaussian Process Bandit Optimization Andreas Krause, Cheng S. Ong
NeurIPS 2011 Crowdclustering Ryan G. Gomes, Peter Welinder, Andreas Krause, Pietro Perona
AAAI 2011 Dynamic Resource Allocation in Conservation Planning Daniel Golovin, Andreas Krause, Beth Gardner, Sarah J. Converse, Steve Morey
IJCAI 2011 Randomized Sensing in Adversarial Environments Andreas Krause, Alex Roper, Daniel Golovin
NeurIPS 2011 Scalable Training of Mixture Models via Coresets Dan Feldman, Matthew Faulkner, Andreas Krause
JAIR 2010 A Utility-Theoretic Approach to Privacy in Online Services Andreas Krause, Eric Horvitz
COLT 2010 Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization Daniel Golovin, Andreas Krause
ICML 2010 Budgeted Nonparametric Learning from Data Streams Ryan Gomes, Andreas Krause
NeurIPS 2010 Discriminative Clustering by Regularized Information Maximization Andreas Krause, Pietro Perona, Ryan G. Gomes
NeurIPS 2010 Efficient Minimization of Decomposable Submodular Functions Peter Stobbe, Andreas Krause
ICML 2010 Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design Niranjan Srinivas, Andreas Krause, Sham M. Kakade, Matthias W. Seeger
NeurIPS 2010 Near-Optimal Bayesian Active Learning with Noisy Observations Daniel Golovin, Andreas Krause, Debajyoti Ray
MLOSS 2010 SFO: A Toolbox for Submodular Function Optimization Andreas Krause
ICML 2010 Submodular Dictionary Selection for Sparse Representation Andreas Krause, Volkan Cevher
JAIR 2009 Efficient Informative Sensing Using Multiple Robots Amarjeet Singh, Andreas Krause, Carlos Guestrin, William J. Kaiser
IJCAI 2009 Nonmyopic Adaptive Informative Path Planning for Multiple Robots Amarjeet Singh, Andreas Krause, William J. Kaiser
NeurIPS 2009 Online Learning of Assignments Matthew Streeter, Daniel Golovin, Andreas Krause
JAIR 2009 Optimal Value of Information in Graphical Models Andreas Krause, Carlos Guestrin
AAAI 2008 A Utility-Theoretic Approach to Privacy and Personalization Andreas Krause, Eric Horvitz
JMLR 2008 Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies Andreas Krause, Ajit Singh, Carlos Guestrin
JMLR 2008 Robust Submodular Observation Selection Andreas Krause, H. Brendan McMahan, Carlos Guestrin, Anupam Gupta
IJCAI 2007 Efficient Planning of Informative Paths for Multiple Robots Amarjeet Singh, Andreas Krause, Carlos Guestrin, William J. Kaiser, Maxim A. Batalin
AAAI 2007 Near-Optimal Observation Selection Using Submodular Functions Andreas Krause, Carlos Guestrin
ICML 2007 Nonmyopic Active Learning of Gaussian Processes: An Exploration-Exploitation Approach Andreas Krause, Carlos Guestrin
AAAI 2007 Nonmyopic Informative Path Planning in Spatio-Temporal Models Alexandra Meliou, Andreas Krause, Carlos Guestrin, Joseph M. Hellerstein
NeurIPS 2007 Selecting Observations Against Adversarial Objectives Andreas Krause, Brendan Mcmahan, Carlos Guestrin, Anupam Gupta
ICML 2006 Data Association for Topic Intensity Tracking Andreas Krause, Jure Leskovec, Carlos Guestrin
UAI 2005 Near-Optimal Nonmyopic Value of Information in Graphical Models Andreas Krause, Carlos Guestrin
ICML 2005 Near-Optimal Sensor Placements in Gaussian Processes Carlos Guestrin, Andreas Krause, Ajit Paul Singh
IJCAI 2005 Optimal Nonmyopic Value of Information in Graphical Models - Efficient Algorithms and Theoretical Limits Andreas Krause, Carlos Guestrin