ML Anthology
Authors
Search
About
Kulesza, Alex
34 publications
ICML
2025
Approximate Differential Privacy of the $\ell_2$ Mechanism
Matthew Joseph
,
Alex Kulesza
,
Alexander Yu
AISTATS
2025
General Staircase Mechanisms for Optimal Differential Privacy
Alex Kulesza
,
Ananda Theertha Suresh
,
Yuyan Wang
NeurIPS
2025
Private Set Union with Multiple Contributions
Travis Dick
,
Haim Kaplan
,
Alex Kulesza
,
Uri Stemmer
,
Ziteng Sun
,
Ananda Theertha Suresh
ICML
2024
Mean Estimation in the Add-Remove Model of Differential Privacy
Alex Kulesza
,
Ananda Theertha Suresh
,
Yuyan Wang
ICML
2023
Subset-Based Instance Optimality in Private Estimation
Travis Dick
,
Alex Kulesza
,
Ziteng Sun
,
Ananda Theertha Suresh
NeurIPSW
2021
Combining Public and Private Data
Cecilia Ferrando
,
Jennifer Gillenwater
,
Alex Kulesza
ICML
2021
Differentially Private Quantiles
Jennifer Gillenwater
,
Matthew Joseph
,
Alex Kulesza
NeurIPS
2021
Learning with User-Level Privacy
Daniel Levy
,
Ziteng Sun
,
Kareem Amin
,
Satyen Kale
,
Alex Kulesza
,
Mehryar Mohri
,
Ananda Theertha Suresh
ICML
2019
A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes
Jennifer Gillenwater
,
Alex Kulesza
,
Zelda Mariet
,
Sergei Vassilvtiskii
ICML
2019
Bounding User Contributions: A Bias-Variance Trade-Off in Differential Privacy
Kareem Amin
,
Alex Kulesza
,
Andres Munoz
,
Sergei Vassilvtiskii
NeurIPS
2019
Differentially Private Covariance Estimation
Kareem Amin
,
Travis Dick
,
Alex Kulesza
,
Andres Munoz
,
Sergei Vassilvitskii
NeurIPS
2018
Completing State Representations Using Spectral Learning
Nan Jiang
,
Alex Kulesza
,
Satinder Singh
NeurIPS
2018
Maximizing Induced Cardinality Under a Determinantal Point Process
Jennifer A Gillenwater
,
Alex Kulesza
,
Sergei Vassilvitskii
,
Zelda E. Mariet
AAAI
2016
Improving Predictive State Representations via Gradient Descent
Nan Jiang
,
Alex Kulesza
,
Satinder Singh
IJCAI
2016
The Dependence of Effective Planning Horizon on Model Accuracy
Nan Jiang
,
Alex Kulesza
,
Satinder Singh
,
Richard L. Lewis
ICML
2015
Abstraction Selection in Model-Based Reinforcement Learning
Nan Jiang
,
Alex Kulesza
,
Satinder Singh
AISTATS
2015
Low-Rank Spectral Learning with Weighted Loss Functions
Alex Kulesza
,
Nan Jiang
,
Satinder Singh
AAAI
2015
Spectral Learning of Predictive State Representations with Insufficient Statistics
Alex Kulesza
,
Nan Jiang
,
Satinder Singh
NeurIPS
2014
Expectation-Maximization for Learning Determinantal Point Processes
Jennifer A Gillenwater
,
Alex Kulesza
,
Emily B. Fox
,
Ben Taskar
AISTATS
2014
Low-Rank Spectral Learning
Alex Kulesza
,
N. Raj Rao
,
Satinder Singh
MLJ
2013
Adaptive Regularization of Weight Vectors
Koby Crammer
,
Alex Kulesza
,
Mark Dredze
AISTATS
2013
Nystrom Approximation for Large-Scale Determinantal Processes
Raja Hafiz Affandi
,
Alex Kulesza
,
Emily B. Fox
,
Ben Taskar
FnTML
2012
Determinantal Point Processes for Machine Learning
Alex Kulesza
,
Ben Taskar
UAI
2012
Markov Determinantal Point Processes
Raja Hafiz Affandi
,
Alex Kulesza
,
Emily B. Fox
NeurIPS
2012
Near-Optimal MAP Inference for Determinantal Point Processes
Jennifer Gillenwater
,
Alex Kulesza
,
Ben Taskar
ICML
2011
K-DPPs: Fixed-Size Determinantal Point Processes
Alex Kulesza
,
Ben Taskar
UAI
2011
Learning Determinantal Point Processes
Alex Kulesza
,
Ben Taskar
MLJ
2010
A Theory of Learning from Different Domains
Shai Ben-David
,
John Blitzer
,
Koby Crammer
,
Alex Kulesza
,
Fernando Pereira
,
Jennifer Wortman Vaughan
AISTATS
2010
Exploiting Feature Covariance in High-Dimensional Online Learning
Justin Ma
,
Alex Kulesza
,
Mark Dredze
,
Koby Crammer
,
Lawrence Saul
,
Fernando Pereira
MLJ
2010
Multi-Domain Learning by Confidence-Weighted Parameter Combination
Mark Dredze
,
Alex Kulesza
,
Koby Crammer
NeurIPS
2010
Structured Determinantal Point Processes
Alex Kulesza
,
Ben Taskar
NeurIPS
2009
Adaptive Regularization of Weight Vectors
Koby Crammer
,
Alex Kulesza
,
Mark Dredze
NeurIPS
2007
Learning Bounds for Domain Adaptation
John Blitzer
,
Koby Crammer
,
Alex Kulesza
,
Fernando Pereira
,
Jennifer Wortman
NeurIPS
2007
Structured Learning with Approximate Inference
Alex Kulesza
,
Fernando Pereira