ML Anthology
Authors
Search
About
Kulis, Brian
41 publications
WACV
2025
Image-Caption Encoding for Improving Zero-Shot Generalization
Eric Yu
,
Christopher Liao
,
Sathvik Ravi
,
Theodoros Tsiligkaridis
,
Brian Kulis
ICLR
2025
Multimodal Unsupervised Domain Generalization by Retrieving Across the Modality Gap
Christopher Liao
,
Christian So
,
Theodoros Tsiligkaridis
,
Brian Kulis
CVPR
2024
Descriptor and Word Soups: Overcoming the Parameter Efficiency Accuracy Tradeoff for Out-of-Distribution Few-Shot Learning
Christopher Liao
,
Theodoros Tsiligkaridis
,
Brian Kulis
ICML
2023
Supervised Metric Learning to Rank for Retrieval via Contextual Similarity Optimization
Christopher Liao
,
Theodoros Tsiligkaridis
,
Brian Kulis
ICML
2022
Faster Algorithms for Learning Convex Functions
Ali Siahkamari
,
Durmus Alp Emre Acar
,
Christopher Liao
,
Kelly L Geyer
,
Venkatesh Saligrama
,
Brian Kulis
WACV
2021
Real-Time Localized Photorealistic Video Style Transfer
Xide Xia
,
Tianfan Xue
,
Wei-Sheng Lai
,
Zheng Sun
,
Abby Chang
,
Brian Kulis
,
Jiawen Chen
ICML
2020
Deep Divergence Learning
Hatice Kubra Cilingir
,
Rachel Manzelli
,
Brian Kulis
ECCV
2020
Joint Bilateral Learning for Real-Time Universal Photorealistic Style Transfer
Xide Xia
,
Meng Zhang
,
Tianfan Xue
,
Zheng Sun
,
Hui Fang
,
Brian Kulis
,
Jiawen Chen
NeurIPS
2020
Learning to Approximate a Bregman Divergence
Ali Siahkamari
,
Xide Xia
,
Venkatesh Saligrama
,
David Castañón
,
Brian Kulis
ICML
2020
Piecewise Linear Regression via a Difference of Convex Functions
Ali Siahkamari
,
Aditya Gangrade
,
Brian Kulis
,
Venkatesh Saligrama
IJCAI
2019
Protecting Neural Networks with Hierarchical Random Switching: Towards Better Robustness-Accuracy Trade-Off for Stochastic Defenses
Xiao Wang
,
Siyue Wang
,
Pin-Yu Chen
,
Yanzhi Wang
,
Brian Kulis
,
Xue Lin
,
Sang Chin
ICMLW
2019
Prototypical Bregman Networks
Kubra Cilingir
,
Brian Kulis
AISTATS
2017
Combinatorial Topic Models Using Small-Variance Asymptotics
Ke Jiang
,
Suvrit Sra
,
Brian Kulis
ICML
2016
Robust Monte Carlo Sampling Using Riemannian Nosé-Poincaré Hamiltonian Dynamics
Anirban Roychowdhury
,
Brian Kulis
,
Srinivasan Parthasarathy
AISTATS
2015
A Sufficient Statistics Construction of Exponential Family Levy Measure Densities for Nonparametric Conjugate Models
Robert Finn
,
Brian Kulis
AISTATS
2015
Gamma Processes, Stick-Breaking, and Variational Inference
Anirban Roychowdhury
,
Brian Kulis
AISTATS
2015
Power-Law Graph Cuts
Xiangyang Zhou
,
Jiaxin Zhang
,
Brian Kulis
CVPR
2015
Revisiting Kernelized Locality-Sensitive Hashing for Improved Large-Scale Image Retrieval
Ke Jiang
,
Qichao Que
,
Brian Kulis
NeurIPS
2013
Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture
Trevor Campbell
,
Miao Liu
,
Brian Kulis
,
Jonathan P How
,
Lawrence Carin
ICML
2013
MAD-Bayes: MAP-Based Asymptotic Derivations from Bayes
Tamara Broderick
,
Brian Kulis
,
Michael Jordan
FnTML
2013
Metric Learning: A Survey
Brian Kulis
NeurIPS
2013
Small-Variance Asymptotics for Hidden Markov Models
Anirban Roychowdhury
,
Ke Jiang
,
Brian Kulis
ECCV
2012
Discovering Latent Domains for Multisource Domain Adaptation
Judy Hoffman
,
Brian Kulis
,
Trevor Darrell
,
Kate Saenko
JMLR
2012
Metric and Kernel Learning Using a Linear Transformation
Prateek Jain
,
Brian Kulis
,
Jason V. Davis
,
Inderjit S. Dhillon
ICML
2012
Revisiting K-Means: New Algorithms via Bayesian Nonparametrics
Brian Kulis
,
Michael I. Jordan
NeurIPS
2012
Small-Variance Asymptotics for Exponential Family Dirichlet Process Mixture Models
Ke Jiang
,
Brian Kulis
,
Michael I. Jordan
CVPR
2011
What You Saw Is Not What You Get: Domain Adaptation Using Asymmetric Kernel Transforms
Brian Kulis
,
Kate Saenko
,
Trevor Darrell
ECCV
2010
Adapting Visual Category Models to New Domains
Kate Saenko
,
Brian Kulis
,
Mario Fritz
,
Trevor Darrell
ICML
2010
Implicit Online Learning
Brian Kulis
,
Peter L. Bartlett
NeurIPS
2010
Inductive Regularized Learning of Kernel Functions
Prateek Jain
,
Brian Kulis
,
Inderjit S. Dhillon
AISTATS
2009
Convex Perturbations for Scalable Semidefinite Programming
Brian Kulis
,
Suvrit Sra
,
Inderjit Dhillon
ICCV
2009
Kernelized Locality-Sensitive Hashing for Scalable Image Search
Brian Kulis
,
Kristen Grauman
NeurIPS
2009
Learning to Hash with Binary Reconstructive Embeddings
Brian Kulis
,
Trevor Darrell
JMLR
2009
Low-Rank Kernel Learning with Bregman Matrix Divergences
Brian Kulis
,
Mátyás A. Sustik
,
Inderjit S. Dhillon
MLJ
2009
Semi-Supervised Graph Clustering: A Kernel Approach
Brian Kulis
,
Sugato Basu
,
Inderjit S. Dhillon
,
Raymond J. Mooney
CVPR
2008
Fast Image Search for Learned Metrics
Prateek Jain
,
Brian Kulis
,
Kristen Grauman
NeurIPS
2008
Online Metric Learning and Fast Similarity Search
Prateek Jain
,
Brian Kulis
,
Inderjit S. Dhillon
,
Kristen Grauman
AISTATS
2007
Fast Low-Rank Semidefinite Programming for Embedding and Clustering
Brian Kulis
,
Arun C. Surendran
,
John C. Platt
ICML
2007
Information-Theoretic Metric Learning
Jason V. Davis
,
Brian Kulis
,
Prateek Jain
,
Suvrit Sra
,
Inderjit S. Dhillon
ICML
2006
Learning Low-Rank Kernel Matrices
Brian Kulis
,
Mátyás A. Sustik
,
Inderjit S. Dhillon
ICML
2005
Semi-Supervised Graph Clustering: A Kernel Approach
Brian Kulis
,
Sugato Basu
,
Inderjit S. Dhillon
,
Raymond J. Mooney