ML Anthology
Authors
Search
About
Kumar, M. Pawan
51 publications
ICLR
2025
Do as I Do (Safely): Mitigating Task-Specific Fine-Tuning Risks in Large Language Models
Francisco Eiras
,
Aleksandar Petrov
,
Philip Torr
,
M. Pawan Kumar
,
Adel Bibi
ICML
2024
Efficient Error Certification for Physics-Informed Neural Networks
Francisco Eiras
,
Adel Bibi
,
Rudy R Bunel
,
Krishnamurthy Dj Dvijotham
,
Philip Torr
,
M. Pawan Kumar
ICLR
2024
Expressive Losses for Verified Robustness via Convex Combinations
Alessandro De Palma
,
Rudy R Bunel
,
Krishnamurthy Dj Dvijotham
,
M. Pawan Kumar
,
Robert Stanforth
,
Alessio Lomuscio
ICMLW
2024
Mimicking User Data: On Mitigating Fine-Tuning Risks in Closed Large Language Models
Francisco Eiras
,
Aleksandar Petrov
,
Philip Torr
,
M. Pawan Kumar
,
Adel Bibi
JMLR
2024
Scaling the Convex Barrier with Sparse Dual Algorithms
Alessandro De Palma
,
Harkirat Singh Behl
,
Rudy Bunel
,
Philip H.S. Torr
,
M. Pawan Kumar
JMLR
2022
A Stochastic Bundle Method for Interpolation
Alasdair Paren
,
Leonard Berrada
,
Rudra P. K. Poudel
,
M. Pawan Kumar
TMLR
2022
ANCER: Anisotropic Certification via Sample-Wise Volume Maximization
Francisco Eiras
,
Motasem Alfarra
,
Philip Torr
,
M. Pawan Kumar
,
Puneet K. Dokania
,
Bernard Ghanem
,
Adel Bibi
TMLR
2022
Faking Interpolation Until You Make It
Alasdair Paren
,
Rudra P. K. Poudel
,
M. Pawan Kumar
TMLR
2022
Lookback for Learning to Branch
Prateek Gupta
,
Elias Boutros Khalil
,
Didier Chételat
,
Maxime Gasse
,
Andrea Lodi
,
Yoshua Bengio
,
M. Pawan Kumar
UAI
2021
Generating Adversarial Examples with Graph Neural Networks
Florian Jaeckle
,
M. Pawan Kumar
NeurIPS
2021
Make Sure You're Unsure: A Framework for Verifying Probabilistic Specifications
Leonard Berrada
,
Sumanth Dathathri
,
Krishnamurthy Dvijotham
,
Robert Stanforth
,
Rudy R Bunel
,
Jonathan Uesato
,
Sven Gowal
,
M. Pawan Kumar
NeurIPS
2021
Overcoming the Convex Barrier for Simplex Inputs
Harkirat Singh Behl
,
M. Pawan Kumar
,
Philip Torr
,
Krishnamurthy Dvijotham
ICLR
2021
Scaling the Convex Barrier with Active Sets
Alessandro De Palma
,
Harkirat Behl
,
Rudy R Bunel
,
Philip Torr
,
M. Pawan Kumar
JMLR
2020
Branch and Bound for Piecewise Linear Neural Network Verification
Rudy Bunel
,
Jingyue Lu
,
Ilker Turkaslan
,
Philip H.S. Torr
,
Pushmeet Kohli
,
M. Pawan Kumar
ICLR
2020
Neural Network Branching for Neural Network Verification
Jingyue Lu
,
M. Pawan Kumar
ICML
2020
Training Neural Networks for and by Interpolation
Leonard Berrada
,
Andrew Zisserman
,
M. Pawan Kumar
ECCV
2020
Weakly Supervised Instance Segmentation by Learning Annotation Consistent Instances
Aditya Arun
,
C.V. Jawahar
,
M. Pawan Kumar
ICLR
2019
A Statistical Approach to Assessing Neural Network Robustness
Stefan Webb
,
Tom Rainforth
,
Yee Whye Teh
,
M. Pawan Kumar
ICLR
2019
Deep Frank-Wolfe for Neural Network Optimization
Leonard Berrada
,
Andrew Zisserman
,
M. Pawan Kumar
AISTATS
2018
Learning to Round for Discrete Labeling Problems
Pritish Mohapatra
,
C. V. Jawahar
,
M. Pawan Kumar
AISTATS
2018
Optimal Submodular Extensions for Marginal Estimation
Pankaj Pansari
,
Chris Russell
,
M. Pawan Kumar
ICLR
2018
Smooth Loss Functions for Deep Top-K Classification
Leonard Berrada
,
Andrew Zisserman
,
M. Pawan Kumar
CVPR
2017
Efficient Linear Programming for Dense CRFs
Thalaiyasingam Ajanthan
,
Alban Desmaison
,
Rudy Bunel
,
Mathieu Salzmann
,
Philip H. S. Torr
,
M. Pawan Kumar
ICLR
2017
Learning to Superoptimize Programs
Rudy Bunel
,
Alban Desmaison
,
M. Pawan Kumar
,
Philip H. S. Torr
,
Pushmeet Kohli
CVPR
2017
Truncated Max-of-Convex Models
Pankaj Pansari
,
M. Pawan Kumar
ICLR
2017
Trusting SVM for Piecewise Linear CNNs
Leonard Berrada
,
Andrew Zisserman
,
M. Pawan Kumar
ECCV
2016
Efficient Continuous Relaxations for Dense CRF
Alban Desmaison
,
Rudy Bunel
,
Pushmeet Kohli
,
Philip H. S. Torr
,
M. Pawan Kumar
ECCV
2016
Partial Linearization Based Optimization for Multi-Class SVM
Pritish Mohapatra
,
Puneet Kumar Dokania
,
C. V. Jawahar
,
M. Pawan Kumar
JMLR
2016
Rounding-Based Moves for Semi-Metric Labeling
M. Pawan Kumar
,
Puneet K. Dokania
ICCV
2015
Entropy-Based Latent Structured Output Prediction
Diane Bouchacourt
,
Sebastian Nowozin
,
M. Pawan Kumar
ICCV
2015
Parsimonious Labeling
Puneet K. Dokania
,
M. Pawan Kumar
NeurIPS
2014
Efficient Optimization for Average Precision SVM
Pritish Mohapatra
,
C.V. Jawahar
,
M. Pawan Kumar
ECCV
2014
Learning to Rank Using High-Order Information
Puneet Kumar Dokania
,
Aseem Behl
,
C. V. Jawahar
,
M. Pawan Kumar
CVPR
2014
Optimizing Average Precision Using Weakly Supervised Data
Aseem Behl
,
C. V. Jawahar
,
M. Pawan Kumar
NeurIPS
2014
Rounding-Based Moves for Metric Labeling
M. Pawan Kumar
AISTATS
2012
Max-Margin Min-Entropy Models
Kevin Miller
,
M. Pawan Kumar
,
Ben Packer
,
Danny Goodman
,
Daphne Koller
ICML
2012
Modeling Latent Variable Uncertainty for Loss-Based Learning
M. Pawan Kumar
,
Benjamin Packer
,
Daphne Koller
JMLR
2011
Improved Moves for Truncated Convex Models
M. Pawan Kumar
,
Olga Veksler
,
Philip H.S. Torr
ICCV
2011
Learning Specific-Class Segmentation from Diverse Data
M. Pawan Kumar
,
Haithem Turki
,
Dan Preston
,
Daphne Koller
CVPR
2010
Efficiently Selecting Regions for Scene Understanding
M. Pawan Kumar
,
Daphne Koller
CVPR
2010
Energy Minimization for Linear Envelope MRFs
Pushmeet Kohli
,
M. Pawan Kumar
JMLR
2009
An Analysis of Convex Relaxations for MAP Estimation of Discrete MRFs
M. Pawan Kumar
,
Vladimir Kolmogorov
,
Philip H.S. Torr
ICCV
2009
Efficient Discriminative Learning of Parts-Based Models
M. Pawan Kumar
,
Andrew Zisserman
,
Philip H. S. Torr
UAI
2009
MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts
M. Pawan Kumar
,
Daphne Koller
ICML
2008
Efficiently Solving Convex Relaxations for MAP Estimation
M. Pawan Kumar
,
Philip H. S. Torr
ICCV
2007
An Invariant Large Margin Nearest Neighbour Classifier
M. Pawan Kumar
,
Philip H. S. Torr
,
Andrew Zisserman
CVPR
2007
P3 & Beyond: Solving Energies with Higher Order Cliques
Pushmeet Kohli
,
M. Pawan Kumar
,
Philip H. S. Torr
ECCV
2006
Fast Memory-Efficient Generalized Belief Propagation
M. Pawan Kumar
,
Philip H. S. Torr
CVPR
2006
Solving Markov Random Fields Using Second Order Cone Programming Relaxations
M. Pawan Kumar
,
Philip H. S. Torr
,
Andrew Zisserman
ICCV
2005
Learning Layered Motion Segmentation of Video
M. Pawan Kumar
,
Philip H. S. Torr
,
Andrew Zisserman
CVPR
2005
OBJ CUT
M. Pawan Kumar
,
Philip H. S. Torr
,
Andrew Zisserman