ML Anthology
Authors
Search
About
Kurle, Richard
12 publications
TMLR
2025
AB-UPT: Scaling Neural CFD Surrogates for High- Fidelity Automotive Aerodynamics Simulations via Anchored- Branched Universal Physics Transformers
Benedikt Alkin
,
Maurits Bleeker
,
Richard Kurle
,
Tobias Kronlachner
,
Reinhard Sonnleitner
,
Matthias Dorfer
,
Johannes Brandstetter
ICML
2025
xLSTM 7b: A Recurrent LLM for Fast and Efficient Inference
Maximilian Beck
,
Korbinian Pöppel
,
Phillip Lippe
,
Richard Kurle
,
Patrick M Blies
,
Günter Klambauer
,
Sebastian Böck
,
Sepp Hochreiter
ICLRW
2025
xLSTM 7b: A Recurrent LLM for Fast and Efficient Inference
Maximilian Beck
,
Korbinian Pöppel
,
Phillip Lippe
,
Richard Kurle
,
Patrick M Blies
,
Günter Klambauer
,
Sebastian Böck
,
Sepp Hochreiter
NeurIPS
2022
On the Detrimental Effect of Invariances in the Likelihood for Variational Inference
Richard Kurle
,
Ralf Herbrich
,
Tim Januschowski
,
Yuyang Wang
,
Jan Gasthaus
NeurIPS
2021
Deep Explicit Duration Switching Models for Time Series
Abdul Fatir Ansari
,
Konstantinos Benidis
,
Richard Kurle
,
Ali Caner Turkmen
,
Harold Soh
,
Alexander J Smola
,
Bernie Wang
,
Tim Januschowski
NeurIPS
2021
Latent Matters: Learning Deep State-Space Models
Alexej Klushyn
,
Richard Kurle
,
Maximilian Soelch
,
Botond Cseke
,
Patrick van der Smagt
ICLR
2020
Continual Learning with Bayesian Neural Networks for Non-Stationary Data
Richard Kurle
,
Botond Cseke
,
Alexej Klushyn
,
Patrick van der Smagt
,
Stephan Günnemann
NeurIPS
2020
Deep Rao-Blackwellised Particle Filters for Time Series Forecasting
Richard Kurle
,
Syama Sundar Rangapuram
,
Emmanuel de Bézenac
,
Stephan Günnemann
,
Jan Gasthaus
NeurIPS
2020
Normalizing Kalman Filters for Multivariate Time Series Analysis
Emmanuel de Bézenac
,
Syama Sundar Rangapuram
,
Konstantinos Benidis
,
Michael Bohlke-Schneider
,
Richard Kurle
,
Lorenzo Stella
,
Hilaf Hasson
,
Patrick Gallinari
,
Tim Januschowski
NeurIPS
2019
Learning Hierarchical Priors in VAEs
Alexej Klushyn
,
Nutan Chen
,
Richard Kurle
,
Botond Cseke
,
Patrick van der Smagt
AAAI
2019
Multi-Source Neural Variational Inference
Richard Kurle
,
Stephan Günnemann
,
Patrick van der Smagt
AISTATS
2018
Metrics for Deep Generative Models
Nutan Chen
,
Alexej Klushyn
,
Richard Kurle
,
Xueyan Jiang
,
Justin Bayer
,
Patrick van der Smagt