ML Anthology
Authors
Search
About
Kusner, Matt J.
21 publications
AISTATS
2023
Adapting to Latent Subgroup Shifts via Concepts and Proxies
Ibrahim Alabdulmohsin
,
Nicole Chiou
,
Alexander D’Amour
,
Arthur Gretton
,
Sanmi Koyejo
,
Matt J. Kusner
,
Stephen R. Pfohl
,
Olawale Salaudeen
,
Jessica Schrouff
,
Katherine Tsai
NeurIPS
2023
No Train No Gain: Revisiting Efficient Training Algorithms for Transformer-Based Language Models
Jean Kaddour
,
Oscar Key
,
Piotr Nawrot
,
Pasquale Minervini
,
Matt J Kusner
UAI
2022
Causal Inference with Treatment Measurement Error: A Nonparametric Instrumental Variable Approach
Yuchen Zhu
,
Limor Gultchin
,
Arthur Gretton
,
Matt J. Kusner
,
Ricardo Silva
NeurIPS
2022
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
,
Haydn Jones
,
Juston Moore
,
Matt J Kusner
,
John Bradshaw
,
Jacob Gardner
NeurIPS
2022
When Do Flat Minima Optimizers Work?
Jean Kaddour
,
Linqing Liu
,
Ricardo Silva
,
Matt J Kusner
NeurIPS
2021
Causal Effect Inference for Structured Treatments
Jean Kaddour
,
Yuchen Zhu
,
Qi Liu
,
Matt J Kusner
,
Ricardo Silva
ICCV
2021
Unsupervised Point Cloud Pre-Training via Occlusion Completion
Hanchen Wang
,
Qi Liu
,
Xiangyu Yue
,
Joan Lasenby
,
Matt J. Kusner
NeurIPS
2020
A Class of Algorithms for General Instrumental Variable Models
Niki Kilbertus
,
Matt J Kusner
,
Ricardo Silva
NeurIPS
2020
Barking up the Right Tree: An Approach to Search over Molecule Synthesis DAGs
John Bradshaw
,
Brooks Paige
,
Matt J Kusner
,
Marwin Segler
,
José Miguel Hernández-Lobato
ICLR
2019
A Generative Model for Electron Paths
John Bradshaw
,
Matt J. Kusner
,
Brooks Paige
,
Marwin H. S. Segler
,
José Miguel Hernández-Lobato
NeurIPS
2019
A Model to Search for Synthesizable Molecules
John Bradshaw
,
Brooks Paige
,
Matt J Kusner
,
Marwin Segler
,
José Miguel Hernández-Lobato
ICLRW
2019
Generating Molecules via Chemical Reactions
John Bradshaw
,
Matt J. Kusner
,
Brooks Paige
,
Marwin H. S. Segler
,
José Miguel Hernández-Lobato
UAI
2019
The Sensitivity of Counterfactual Fairness to Unmeasured Confounding
Niki Kilbertus
,
Philip J. Ball
,
Matt J. Kusner
,
Adrian Weller
,
Ricardo Silva
NeurIPS
2017
Counterfactual Fairness
Matt J Kusner
,
Joshua Loftus
,
Chris Russell
,
Ricardo Silva
ICML
2017
Grammar Variational Autoencoder
Matt J. Kusner
,
Brooks Paige
,
José Miguel Hernández-Lobato
NeurIPS
2017
When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness
Chris Russell
,
Matt J Kusner
,
Joshua Loftus
,
Ricardo Silva
AISTATS
2016
Private Causal Inference
Matt J. Kusner
,
Yu Sun
,
Karthik Sridharan
,
Kilian Q. Weinberger
NeurIPS
2016
Supervised Word Mover's Distance
Gao Huang
,
Chuan Guo
,
Matt J Kusner
,
Yu Sun
,
Fei Sha
,
Kilian Q. Weinberger
NeurIPS
2015
Fast Distributed K-Center Clustering with Outliers on Massive Data
Gustavo Malkomes
,
Matt J Kusner
,
Wenlin Chen
,
Kilian Q. Weinberger
,
Benjamin Moseley
JMLR
2014
Classifier Cascades and Trees for Minimizing Feature Evaluation Cost
Zhixiang Xu
,
Matt J. Kusner
,
Kilian Q. Weinberger
,
Minmin Chen
,
Olivier Chapelle
AAAI
2014
Feature-Cost Sensitive Learning with Submodular Trees of Classifiers
Matt J. Kusner
,
Wenlin Chen
,
Quan Zhou
,
Zhixiang Eddie Xu
,
Kilian Q. Weinberger
,
Yixin Chen