Kusner, Matt J.

21 publications

AISTATS 2023 Adapting to Latent Subgroup Shifts via Concepts and Proxies Ibrahim Alabdulmohsin, Nicole Chiou, Alexander D’Amour, Arthur Gretton, Sanmi Koyejo, Matt J. Kusner, Stephen R. Pfohl, Olawale Salaudeen, Jessica Schrouff, Katherine Tsai
NeurIPS 2023 No Train No Gain: Revisiting Efficient Training Algorithms for Transformer-Based Language Models Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, Matt J Kusner
UAI 2022 Causal Inference with Treatment Measurement Error: A Nonparametric Instrumental Variable Approach Yuchen Zhu, Limor Gultchin, Arthur Gretton, Matt J. Kusner, Ricardo Silva
NeurIPS 2022 Local Latent Space Bayesian Optimization over Structured Inputs Natalie Maus, Haydn Jones, Juston Moore, Matt J Kusner, John Bradshaw, Jacob Gardner
NeurIPS 2022 When Do Flat Minima Optimizers Work? Jean Kaddour, Linqing Liu, Ricardo Silva, Matt J Kusner
NeurIPS 2021 Causal Effect Inference for Structured Treatments Jean Kaddour, Yuchen Zhu, Qi Liu, Matt J Kusner, Ricardo Silva
ICCV 2021 Unsupervised Point Cloud Pre-Training via Occlusion Completion Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, Matt J. Kusner
NeurIPS 2020 A Class of Algorithms for General Instrumental Variable Models Niki Kilbertus, Matt J Kusner, Ricardo Silva
NeurIPS 2020 Barking up the Right Tree: An Approach to Search over Molecule Synthesis DAGs John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, José Miguel Hernández-Lobato
ICLR 2019 A Generative Model for Electron Paths John Bradshaw, Matt J. Kusner, Brooks Paige, Marwin H. S. Segler, José Miguel Hernández-Lobato
NeurIPS 2019 A Model to Search for Synthesizable Molecules John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, José Miguel Hernández-Lobato
ICLRW 2019 Generating Molecules via Chemical Reactions John Bradshaw, Matt J. Kusner, Brooks Paige, Marwin H. S. Segler, José Miguel Hernández-Lobato
UAI 2019 The Sensitivity of Counterfactual Fairness to Unmeasured Confounding Niki Kilbertus, Philip J. Ball, Matt J. Kusner, Adrian Weller, Ricardo Silva
NeurIPS 2017 Counterfactual Fairness Matt J Kusner, Joshua Loftus, Chris Russell, Ricardo Silva
ICML 2017 Grammar Variational Autoencoder Matt J. Kusner, Brooks Paige, José Miguel Hernández-Lobato
NeurIPS 2017 When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness Chris Russell, Matt J Kusner, Joshua Loftus, Ricardo Silva
AISTATS 2016 Private Causal Inference Matt J. Kusner, Yu Sun, Karthik Sridharan, Kilian Q. Weinberger
NeurIPS 2016 Supervised Word Mover's Distance Gao Huang, Chuan Guo, Matt J Kusner, Yu Sun, Fei Sha, Kilian Q. Weinberger
NeurIPS 2015 Fast Distributed K-Center Clustering with Outliers on Massive Data Gustavo Malkomes, Matt J Kusner, Wenlin Chen, Kilian Q. Weinberger, Benjamin Moseley
JMLR 2014 Classifier Cascades and Trees for Minimizing Feature Evaluation Cost Zhixiang Xu, Matt J. Kusner, Kilian Q. Weinberger, Minmin Chen, Olivier Chapelle
AAAI 2014 Feature-Cost Sensitive Learning with Submodular Trees of Classifiers Matt J. Kusner, Wenlin Chen, Quan Zhou, Zhixiang Eddie Xu, Kilian Q. Weinberger, Yixin Chen