Lafferty, John D.

42 publications

NeurIPS 2021 Convergence and Alignment of Gradient Descent with Random Backpropagation Weights Ganlin Song, Ruitu Xu, John D. Lafferty
AAAI 2019 TopicEq: A Joint Topic and Mathematical Equation Model for Scientific Texts Michihiro Yasunaga, John D. Lafferty
ICML 2012 Conditional Sparse Coding and Grouped Multivariate Regression Min Xu, John D. Lafferty
NeurIPS 2012 Exponential Concentration for Mutual Information Estimation with Application to Forests Han Liu, Larry Wasserman, John D. Lafferty
ICML 2012 High Dimensional Semiparametric Gaussian Copula Graphical Models Han Liu, Fang Han, Ming Yuan, John D. Lafferty, Larry A. Wasserman
NeurIPS 2012 Nonparametric Reduced Rank Regression Rina Foygel, Michael Horrell, Mathias Drton, John D. Lafferty
ICML 2012 Sequential Nonparametric Regression Haijie Gu, John D. Lafferty
ICML 2012 Sparse Additive Functional and Kernel CCA Sivaraman Balakrishnan, Kriti Puniyani, John D. Lafferty
CVPR 2011 Learning Image Representations from the Pixel Level via Hierarchical Sparse Coding Kai Yu, Yuanqing Lin, John D. Lafferty
COLT 2010 Forest Density Estimation Anupam Gupta, John D. Lafferty, Han Liu, Larry A. Wasserman, Min Xu
NeurIPS 2010 Graph-Valued Regression Han Liu, Xi Chen, Larry Wasserman, John D. Lafferty
MLJ 2010 Time Varying Undirected Graphs Shuheng Zhou, John D. Lafferty, Larry A. Wasserman
ICML 2009 Large-Scale Collaborative Prediction Using a Nonparametric Random Effects Model Kai Yu, John D. Lafferty, Shenghuo Zhu, Yihong Gong
NeurIPS 2008 Nonparametric Regression and Classification with Joint Sparsity Constraints Han Liu, Larry Wasserman, John D. Lafferty
COLT 2008 Time Varying Undirected Graphs Shuheng Zhou, John D. Lafferty, Larry A. Wasserman
NeurIPS 2007 Compressed Regression Shuheng Zhou, Larry Wasserman, John D. Lafferty
NeurIPS 2007 SpAM: Sparse Additive Models Han Liu, Larry Wasserman, John D. Lafferty, Pradeep K. Ravikumar
NeurIPS 2007 Statistical Analysis of Semi-Supervised Regression Larry Wasserman, John D. Lafferty
ICML 2006 Dynamic Topic Models David M. Blei, John D. Lafferty
NeurIPS 2006 High-Dimensional Graphical Model Selection Using $\ell_1$-Regularized Logistic Regression Martin J. Wainwright, John D. Lafferty, Pradeep K. Ravikumar
ICML 2006 Quadratic Programming Relaxations for Metric Labeling and Markov Random Field MAP Estimation Pradeep Ravikumar, John D. Lafferty
NeurIPS 2005 Correlated Topic Models John D. Lafferty, David M. Blei
ICML 2005 Harmonic Mixtures: Combining Mixture Models and Graph-Based Methods for Inductive and Scalable Semi-Supervised Learning Xiaojin Zhu, John D. Lafferty
NeurIPS 2005 Preconditioner Approximations for Probabilistic Graphical Models John D. Lafferty, Pradeep K. Ravikumar
NeurIPS 2005 Rodeo: Sparse Nonparametric Regression in High Dimensions Larry Wasserman, John D. Lafferty
ICML 2004 Hyperplane Margin Classifiers on the Multinomial Manifold Guy Lebanon, John D. Lafferty
ICML 2004 Kernel Conditional Random Fields: Representation and Clique Selection John D. Lafferty, Xiaojin Zhu, Yan Liu
NeurIPS 2004 Nonparametric Transforms of Graph Kernels for Semi-Supervised Learning Xiaojin Zhu, Jaz Kandola, Zoubin Ghahramani, John D. Lafferty
ICML 2004 Semi-Supervised Learning Using Randomized Mincuts Avrim Blum, John D. Lafferty, Mugizi Robert Rwebangira, Rajashekar Reddy
UAI 2004 Variational Chernoff Bounds for Graphical Models Pradeep Ravikumar, John D. Lafferty
ICML 2003 Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions Xiaojin Zhu, Zoubin Ghahramani, John D. Lafferty
ECCV 2002 Combining Simple Discriminators for Object Discrimination Shyjan Mahamud, Martial Hebert, John D. Lafferty
NeurIPS 2002 Conditional Models on the Ranking Poset Guy Lebanon, John D. Lafferty
ICML 2002 Cranking: Combining Rankings Using Conditional Probability Models on Permutations Guy Lebanon, John D. Lafferty
ICML 2002 Diffusion Kernels on Graphs and Other Discrete Input Spaces Risi Kondor, John D. Lafferty
UAI 2002 Expectation-Propogation for the Generative Aspect Model Thomas P. Minka, John D. Lafferty
NeurIPS 2002 Information Diffusion Kernels Guy Lebanon, John D. Lafferty
NeurIPS 2001 Boosting and Maximum Likelihood for Exponential Models Guy Lebanon, John D. Lafferty
ICML 2001 Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data John D. Lafferty, Andrew McCallum, Fernando C. N. Pereira
UAI 2001 Iterative Markov Chain Monte Carlo Computation of Reference Priors and Minimax Risk John D. Lafferty, Larry A. Wasserman
COLT 1999 Additive Models, Boosting, and Inference for Generalized Divergences John D. Lafferty
MLJ 1999 Statistical Models for Text Segmentation Doug Beeferman, Adam L. Berger, John D. Lafferty