ML Anthology
Authors
Search
About
Laforgue, Pierre
13 publications
ECML-PKDD
2024
Deep Sketched Output Kernel Regression for Structured Prediction
Tamim El Ahmad
,
Junjie Yang
,
Pierre Laforgue
,
Florence d'Alché-Buc
TMLR
2024
Linear Bandits with Memory
Giulia Clerici
,
Pierre Laforgue
,
Nicolò Cesa-Bianchi
AISTATS
2024
Multitask Online Learning: Listen to the Neighborhood Buzz
Juliette Achddou
,
Nicolò Cesa-Bianchi
,
Pierre Laforgue
AISTATS
2024
Sketch in, Sketch Out: Accelerating Both Learning and Inference for Structured Prediction with Kernels
Tamim El Ahmad
,
Luc Brogat-Motte
,
Pierre Laforgue
,
Florence d’Alché-Buc
TMLR
2023
Fast Kernel Methods for Generic Lipschitz Losses via $p$-Sparsified Sketches
Tamim El Ahmad
,
Pierre Laforgue
,
Florence d'Alché-Buc
NeurIPS
2023
Multitask Learning with No Regret: From Improved Confidence Bounds to Active Learning
Pier Giuseppe Sessa
,
Pierre Laforgue
,
Nicolò Cesa-Bianchi
,
Andreas Krause
AISTATS
2022
A Last Switch Dependent Analysis of Satiation and Seasonality in Bandits
Pierre Laforgue
,
Giulia Clerici
,
Nicolò Cesa-Bianchi
,
Ran Gilad-Bachrach
TMLR
2022
Multitask Online Mirror Descent
Nicolò Cesa-Bianchi
,
Pierre Laforgue
,
Andrea Paudice
,
Massimiliano Pontil
AISTATS
2021
When OT Meets MoM: Robust Estimation of Wasserstein Distance
Guillaume Staerman
,
Pierre Laforgue
,
Pavlo Mozharovskyi
,
Florence d’Alché-Buc
ICML
2021
Generalization Bounds in the Presence of Outliers: A Median-of-Means Study
Pierre Laforgue
,
Guillaume Staerman
,
Stephan Clémençon
ICML
2020
Duality in RKHSs with Infinite Dimensional Outputs: Application to Robust Losses
Pierre Laforgue
,
Alex Lambert
,
Luc Brogat-Motte
,
Florence D’Alché-Buc
AISTATS
2019
Autoencoding Any Data Through Kernel Autoencoders
Pierre Laforgue
,
Stéphan Clémençon
,
Florence d’Alche-Buc
ICML
2019
On Medians of (Randomized) Pairwise Means
Pierre Laforgue
,
Stephan Clemencon
,
Patrice Bertail