ML Anthology
Authors
Search
About
Lang, Hunter
14 publications
ICML
2025
On the Duality Between Gradient Transformations and Adapters
Lucas Torroba Hennigen
,
Hunter Lang
,
Han Guo
,
Yoon Kim
NeurIPS
2024
Theoretical Analysis of Weak-to-Strong Generalization
Hunter Lang
,
David Sontag
,
Aravindan Vijayaraghavan
AISTATS
2023
TabLLM: Few-Shot Classification of Tabular Data with Large Language Models
Stefan Hegselmann
,
Alejandro Buendia
,
Hunter Lang
,
Monica Agrawal
,
Xiaoyi Jiang
,
David Sontag
AISTATS
2023
Who Should Predict? Exact Algorithms for Learning to Defer to Humans
Hussein Mozannar
,
Hunter Lang
,
Dennis Wei
,
Prasanna Sattigeri
,
Subhro Das
,
David Sontag
AISTATS
2022
Leveraging Time Irreversibility with Order-Contrastive Pre-Training
Monica N. Agrawal
,
Hunter Lang
,
Michael Offin
,
Lior Gazit
,
David Sontag
ICML
2022
Co-Training Improves Prompt-Based Learning for Large Language Models
Hunter Lang
,
Monica N Agrawal
,
Yoon Kim
,
David Sontag
NeurIPS
2022
Training Subset Selection for Weak Supervision
Hunter Lang
,
Aravindan Vijayaraghavan
,
David Sontag
AISTATS
2021
Beyond Perturbation Stability: LP Recovery Guarantees for MAP Inference on Noisy Stable Instances
Hunter Lang
,
Aravind Reddy
,
David Sontag
,
Aravindan Vijayaraghavan
ICML
2021
Graph Cuts Always Find a Global Optimum for Potts Models (With a Catch)
Hunter Lang
,
David Sontag
,
Aravindan Vijayaraghavan
AAAI
2021
Self-Supervised Self-Supervision by Combining Deep Learning and Probabilistic Logic
Hunter Lang
,
Hoifung Poon
AISTATS
2019
Block Stability for MAP Inference
Hunter Lang
,
David Sontag
,
Aravindan Vijayaraghavan
NeurIPS
2019
Understanding the Role of Momentum in Stochastic Gradient Methods
Igor Gitman
,
Hunter Lang
,
Pengchuan Zhang
,
Lin Xiao
NeurIPS
2019
Using Statistics to Automate Stochastic Optimization
Hunter Lang
,
Lin Xiao
,
Pengchuan Zhang
AISTATS
2018
Optimality of Approximate Inference Algorithms on Stable Instances
Hunter Lang
,
David A. Sontag
,
Aravindan Vijayaraghavan