Langseth, Helge

15 publications

MLJ 2025 Interpretable Deep Reinforcement Learning via Concept-Based Policy Distillation Yanzhe Bekkemoen, Helge Langseth
PGM 2024 A Divide and Conquer Approach for Solving Structural Causal Models Anna Rodum Bjøru, Rafael Cabañas, Helge Langseth, Antonio Salmerón
ACML 2023 ASAP: Attention-Based State Space Abstraction for Policy Summarization Yanzhe Bekkemoen, Helge Langseth
TMLR 2023 The Multiquadric Kernel for Moment-Matching Distributional Reinforcement Learning Ludvig Killingberg, Helge Langseth
PGM 2022 A Reparameterization of Mixtures of Truncated Basis Functions and Its Applications Antonio Salmerón, Helge Langseth, Andrés Masegosa, Thomas D. Nielsen
UAI 2020 Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles Tárik S. Salem, Helge Langseth, Heri Ramampiaro
AAAI 2019 Forecasting Intra-Hour Imbalances in Electric Power Systems Tárik S. Salem, Karan Kathuria, Heri Ramampiaro, Helge Langseth
JAIR 2018 A Review of Inference Algorithms for Hybrid Bayesian Networks Antonio Salmerón, Rafael Rumí, Helge Langseth, Thomas D. Nielsen, Anders L. Madsen
ICML 2017 Bayesian Models of Data Streams with Hierarchical Power Priors Andrés Masegosa, Thomas D. Nielsen, Helge Langseth, Darı́o Ramos-López, Antonio Salmerón, Anders L. Madsen
ECML-PKDD 2017 Content-Based Social Recommendation with Poisson Matrix Factorization Eliezer de Souza da Silva, Helge Langseth, Heri Ramampiaro
PGM 2016 D-VMP: Distributed Variational Message Passing Andrés R. Masegosa, Ana M. Martı́nez, Helge Langseth, Thomas D. Nielsen, Antonio Salmerón, Darío Ramos-López, Anders L. Madsen
PGM 2016 Scalable MAP Inference in Bayesian Networks Based on a mAP-Reduce Approach Darı́o Ramos-López, Antonio Salmerón, Rafel Rumı́, Ana M. Martı́nez, Thomas D. Nielsen, Andrés R. Masegosa, Helge Langseth, Anders L. Madsen
MLJ 2006 Classification Using Hierarchical Naïve Bayes Models Helge Langseth, Thomas D. Nielsen
MLJ 2005 Latent Classification Models Helge Langseth, Thomas D. Nielsen
JMLR 2003 Fusion of Domain Knowledge with Data for Structural Learning in Object Oriented Domains Helge Langseth, Thomas D. Nielsen