ML Anthology
Authors
Search
About
Lázaro-Gredilla, Miguel
23 publications
TMLR
2025
Diffusion Model Predictive Control
Guangyao Zhou
,
Sivaramakrishnan Swaminathan
,
Rajkumar Vasudeva Raju
,
J Swaroop Guntupalli
,
Wolfgang Lehrach
,
Joseph Ortiz
,
Antoine Dedieu
,
Miguel Lazaro-Gredilla
,
Kevin Patrick Murphy
ICML
2025
Improving Transformer World Models for Data-Efficient RL
Antoine Dedieu
,
Joseph Ortiz
,
Xinghua Lou
,
Carter Wendelken
,
J Swaroop Guntupalli
,
Wolfgang Lehrach
,
Miguel Lazaro-Gredilla
,
Kevin Patrick Murphy
ICLRW
2025
Improving Transformer World Models for Data-Efficient RL
Antoine Dedieu
,
Joseph Ortiz
,
Xinghua Lou
,
Carter Wendelken
,
Wolfgang Lehrach
,
J Swaroop Guntupalli
,
Miguel Lazaro-Gredilla
,
Kevin Patrick Murphy
NeurIPS
2024
DMC-VB: A Benchmark for Representation Learning for Control with Visual Distractors
Joseph Ortiz
,
Antoine Dedieu
,
Wolfgang Lehrach
,
J. Swaroop Guntupalli
,
Carter Wendelken
,
Ahmad Humayun
,
Guangyao Zhou
,
Sivaramakrishnan Swaminathan
,
Miguel Lázaro-Gredilla
,
Kevin Murphy
ICML
2024
Learning Cognitive Maps from Transformer Representations for Efficient Planning in Partially Observed Environments
Antoine Dedieu
,
Wolfgang Lehrach
,
Guangyao Zhou
,
Dileep George
,
Miguel Lazaro-Gredilla
MLOSS
2024
PGMax: Factor Graphs for Discrete Probabilistic Graphical Models and Loopy Belief Propagation in JAX
Guangyao Zhou
,
Antoine Dedieu
,
Nishanth Kumar
,
Wolfgang Lehrach
,
Shrinu Kushagra
,
Dileep George
,
Miguel Lázaro-Gredilla
NeurIPS
2024
What Type of Inference Is Planning?
Miguel Lázaro-Gredilla
,
Li Yang Ku
,
Kevin P. Murphy
,
Dileep George
ICCV
2023
3D Neural Embedding Likelihood: Probabilistic Inverse Graphics for Robust 6d Pose Estimation
Guangyao Zhou
,
Nishad Gothoskar
,
Lirui Wang
,
Joshua B. Tenenbaum
,
Dan Gutfreund
,
Miguel Lázaro-Gredilla
,
Dileep George
,
Vikash K. Mansinghka
ICML
2023
Learning Noisy or Bayesian Networks with Max-Product Belief Propagation
Antoine Dedieu
,
Guangyao Zhou
,
Dileep George
,
Miguel Lazaro-Gredilla
NeurIPS
2023
Schema-Learning and Rebinding as Mechanisms of In-Context Learning and Emergence
Sivaramakrishnan Swaminathan
,
Antoine Dedieu
,
Rajkumar Vasudeva Raju
,
Murray Shanahan
,
Miguel Lazaro-Gredilla
,
Dileep George
NeurIPS
2021
Perturb-and-Max-Product: Sampling and Learning in Discrete Energy-Based Models
Miguel Lazaro-Gredilla
,
Antoine Dedieu
,
Dileep George
AAAI
2021
Query Training: Learning a Worse Model to Infer Better Marginals in Undirected Graphical Models with Hidden Variables
Miguel Lázaro-Gredilla
,
Wolfgang Lehrach
,
Nishad Gothoskar
,
Guangyao Zhou
,
Antoine Dedieu
,
Dileep George
AAAI
2021
Sample-Efficient L0-L2 Constrained Structure Learning of Sparse Ising Models
Antoine Dedieu
,
Miguel Lázaro-Gredilla
,
Dileep George
AISTATS
2018
Variational Rejection Sampling
Aditya Grover
,
Ramki Gummadi
,
Miguel Lázaro-Gredilla
,
Dale Schuurmans
,
Stefano Ermon
ICML
2017
Schema Networks: Zero-Shot Transfer with a Generative Causal Model of Intuitive Physics
Ken Kansky
,
Tom Silver
,
David A. Mély
,
Mohamed Eldawy
,
Miguel Lázaro-Gredilla
,
Xinghua Lou
,
Nimrod Dorfman
,
Szymon Sidor
,
Scott Phoenix
,
Dileep George
NeurIPS
2015
Local Expectation Gradients for Black Box Variational Inference
Michalis Titsias RC Aueb
,
Miguel Lázaro-Gredilla
ICML
2014
Doubly Stochastic Variational Bayes for Non-Conjugate Inference
Michalis Titsias
,
Miguel Lázaro-Gredilla
NeurIPS
2013
Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression
Michalis Titsias RC Aueb
,
Miguel Lazaro-Gredilla
NeurIPS
2012
Bayesian Warped Gaussian Processes
Miguel Lázaro-Gredilla
NeurIPS
2011
Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning
Michalis K. Titsias
,
Miguel Lázaro-Gredilla
ICML
2011
Variational Heteroscedastic Gaussian Process Regression
Miguel Lázaro-Gredilla
,
Michalis K. Titsias
JMLR
2010
Sparse Spectrum Gaussian Process Regression
Miguel Lázaro-Gredilla
,
Joaquin Quiñnero-Candela
,
Carl Edward Rasmussen
,
Aníbal R. Figueiras-Vidal
NeurIPS
2009
Inter-Domain Gaussian Processes for Sparse Inference Using Inducing Features
Miguel Lázaro-Gredilla
,
Aníbal Figueiras-Vidal