Lee, Daniel D.

46 publications

NeurIPS 2022 A Theory of Weight Distribution-Constrained Learning Weishun Zhong, Ben Sorscher, Daniel D. Lee, Haim Sompolinsky
AAAI 2022 Cooperative Multi-Agent Fairness and Equivariant Policies Niko A. Grupen, Bart Selman, Daniel D. Lee
NeurIPS 2022 Online Minimax Multiobjective Optimization: Multicalibeating and Other Applications Daniel D. Lee, Georgy Noarov, Mallesh Pai, Aaron Roth
AAAI 2021 Geodesic-HOF: 3D Reconstruction Without Cutting Corners Ziyun Wang, Eric A. Mitchell, Volkan Isler, Daniel D. Lee
NeurIPS 2021 Local Disentanglement in Variational Auto-Encoders Using Jacobian $l_1$ Regularization Travers Rhodes, Daniel D. Lee
ICLR 2020 Higher-Order Function Networks for Learning Composable 3D Object Representations Eric Mitchell, Selim Engin, Volkan Isler, Daniel D Lee
ECCV 2020 Jointly Learning Visual Motion and Confidence from Local Patches in Event Cameras Daniel R. Kepple, Daewon Lee, Colin Prepsius, Volkan Isler, Il Memming Park, Daniel D. Lee
IJCAI 2020 Reward Prediction Error as an Exploration Objective in Deep RL Riley Simmons-Edler, Ben Eisner, Daniel Yang, Anthony Bisulco, Eric Mitchell, H. Sebastian Seung, Daniel D. Lee
IJCAI 2019 Assumed Density Filtering Q-Learning Heejin Jeong, Clark Zhang, George J. Pappas, Daniel D. Lee
MLJ 2019 Bayesian Optimistic Kullback-Leibler Exploration Kanghoon Lee, Geon-hyeong Kim, Pedro A. Ortega, Daniel D. Lee, Kee-Eung Kim
AAAI 2018 Maximizing Activity in Ising Networks via the TAP Approximation Christopher W. Lynn, Daniel D. Lee
ICLR 2018 Memory Augmented Control Networks Arbaaz Khan, Clark Zhang, Nikolay Atanasov, Konstantinos Karydis, Vijay Kumar, Daniel D. Lee
NeurIPS 2017 Generative Local Metric Learning for Kernel Regression Yung-Kyun Noh, Masashi Sugiyama, Kee-Eung Kim, Frank Park, Daniel D Lee
IJCAI 2016 Bayesian Reinforcement Learning with Behavioral Feedback Teakgyu Hong, Jongmin Lee, Kee-Eung Kim, Pedro A. Ortega, Daniel D. Lee
NeurIPS 2016 Efficient Neural Codes Under Metabolic Constraints Zhuo Wang, Xue-Xin Wei, Alan Stocker, Daniel D Lee
AAAI 2016 Learning Complex Stand-up Motion for Humanoid Robots Heejin Jeong, Daniel D. Lee
NeurIPS 2016 Maximizing Influence in an Ising Network: A Mean-Field Optimal Solution Christopher Lynn, Daniel D Lee
AISTATS 2015 Reactive Bandits with Attitude Pedro A. Ortega, Kee-Eung Kim, Daniel D. Lee
AAAI 2014 An Adversarial Interpretation of Information-Theoretic Bounded Rationality Pedro A. Ortega, Daniel D. Lee
AISTATS 2014 Bias Reduction and Metric Learning for Nearest-Neighbor Estimation of Kullback-Leibler Divergence Yung-Kyun Noh, Masashi Sugiyama, Song Liu, Marthinus Christoffel du Plessis, Frank Chongwoo Park, Daniel D. Lee
NeurIPS 2013 Optimal Neural Population Codes for High-Dimensional Stimulus Variables Zhuo Wang, Alan Stocker, Daniel D Lee
NeurIPS 2012 Diffusion Decision Making for Adaptive K-Nearest Neighbor Classification Yung-kyun Noh, Frank Park, Daniel D. Lee
NeurIPS 2012 Optimal Neural Tuning Curves for Arbitrary Stimulus Distributions: Discrimax, Infomax and Minimum $L_p$ Loss Zhuo Wang, Alan Stocker, Daniel D Lee
AAAI 2011 Learning Dimensional Descent for Optimal Motion Planning in High-Dimensional Spaces Paul Vernaza, Daniel D. Lee
NeurIPS 2010 Generative Local Metric Learning for Nearest Neighbor Classification Yung-kyun Noh, Byoung-tak Zhang, Daniel D. Lee
NeurIPS 2010 Learning via Gaussian Herding Koby Crammer, Daniel D. Lee
AAAI 2010 Online Learning of Uneven Terrain for Humanoid Bipedal Walking Seung-Joon Yi, Byoung-Tak Zhang, Daniel D. Lee
NeurIPS 2008 Extended Grassmann Kernels for Subspace-Based Learning Jihun Hamm, Daniel D. Lee
ICML 2008 Grassmann Discriminant Analysis: A Unifying View on Subspace-Based Learning Jihun Ham, Daniel D. Lee
NeurIPS 2007 Blind Channel Identification for Speech Dereverberation Using L1-Norm Sparse Learning Yuanqing Lin, Jingdong Chen, Youngmoo Kim, Daniel D. Lee
CVPR 2006 Learning a Manifold-Constrained mAP Between Image Sets: Applications to Matching and Pose Estimation Jihun Ham, Ikkjin Ahn, Daniel D. Lee
NeurIPS 2005 Beyond Gaussian Processes: On the Distributions of Infinite Networks Ricky Der, Daniel D. Lee
ICML 2004 A Kernel View of the Dimensionality Reduction of Manifolds Jihun Ham, Daniel D. Lee, Sebastian Mika, Bernhard Schölkopf
NeurIPS 2004 Bayesian Regularization and Nonnegative Deconvolution for Time Delay Estimation Yuanqing Lin, Daniel D. Lee
COLT 2003 Multiplicative Updates for Large Margin Classifiers Fei Sha, Lawrence K. Saul, Daniel D. Lee
NeurIPS 2002 Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines Fei Sha, Lawrence K. Saul, Daniel D. Lee
NeurIPS 2002 Real Time Voice Processing with Audiovisual Feedback: Toward Autonomous Agents with Perfect Pitch Lawrence K. Saul, Daniel D. Lee, Charles L. Isbell, Yann L. Cun
NeurIPS 2001 Multiplicative Updates for Classification by Mixture Models Lawrence K. Saul, Daniel D. Lee
NeurIPS 2000 Algorithms for Non-Negative Matrix Factorization Daniel D. Lee, H. Sebastian Seung
NeurIPS 2000 An Information Maximization Approach to Overcomplete and Recurrent Representations Oren Shriki, Haim Sompolinsky, Daniel D. Lee
NeurIPS 1999 Algorithms for Independent Components Analysis and Higher Order Statistics Daniel D. Lee, Uri Rokni, Haim Sompolinsky
NeurIPS 1999 The Nonnegative Boltzmann Machine Oliver B. Downs, David J. C. MacKay, Daniel D. Lee
NeurIPS 1998 Learning a Continuous Hidden Variable Model for Binary Data Daniel D. Lee, Haim Sompolinsky
NeurIPS 1997 A Neural Network Based Head Tracking System Daniel D Lee, H. S. Seung
NeurIPS 1997 The Rectified Gaussian Distribution Nicholas D. Socci, Daniel D. Lee, H. Sebastian Seung
NeurIPS 1996 Unsupervised Learning by Convex and Conic Coding Daniel D. Lee, H. Sebastian Seung