ML Anthology
Authors
Search
About
Lee, Jonathan
18 publications
AAAI
2025
Cost-Aware Near-Optimal Policy Learning
Joy He-Yueya
,
Jonathan Lee
,
Matthew Jörke
,
Emma Brunskill
ICML
2025
EVOLvE: Evaluating and Optimizing LLMs for In-Context Exploration
Allen Nie
,
Yi Su
,
Bo Chang
,
Jonathan Lee
,
Ed H. Chi
,
Quoc V Le
,
Minmin Chen
WACV
2025
uLayout: Unified Room Layout Estimation for Perspective and Panoramic Images
Jonathan Lee
,
Bolivar E Solarte
,
Chin-Hsuan Wu
,
Jin-Cheng Jhang
,
Fu-En Wang
,
Yi-Hsuan Tsai
,
Min Sun
TMLR
2024
Estimating Optimal Policy Value in Linear Contextual Bandits Beyond Gaussianity
Jonathan Lee
,
Weihao Kong
,
Aldo Pacchiano
,
Vidya Muthukumar
,
Emma Brunskill
NeurIPSW
2024
Information Directed Tree Search: Reasoning and Planning with Language Agents
Yash Chandak
,
HyunJi Nam
,
Allen Nie
,
Jonathan Lee
,
Emma Brunskill
ECCV
2024
Self-Training Room Layout via Geometry-Aware Ray-Casting
Bolivar Solarte
,
Chin-Hsuan Wu
,
Jin-Cheng Jhang
,
Jonathan Lee
,
Yi-Hsuan Tsai
,
Min Sun
AISTATS
2023
Dueling RL: Reinforcement Learning with Trajectory Preferences
Aadirupa Saha
,
Aldo Pacchiano
,
Jonathan Lee
NeurIPS
2023
Experiment Planning with Function Approximation
Aldo Pacchiano
,
Jonathan Lee
,
Emma Brunskill
ICMLW
2023
In-Context Decision-Making from Supervised Pretraining
Jonathan Lee
,
Annie Xie
,
Aldo Pacchiano
,
Yash Chandak
,
Chelsea Finn
,
Ofir Nachum
,
Emma Brunskill
ICML
2023
Learning in POMDPs Is Sample-Efficient with Hindsight Observability
Jonathan Lee
,
Alekh Agarwal
,
Christoph Dann
,
Tong Zhang
NeurIPS
2023
Supervised Pretraining Can Learn In-Context Reinforcement Learning
Jonathan Lee
,
Annie Xie
,
Aldo Pacchiano
,
Yash Chandak
,
Chelsea Finn
,
Ofir Nachum
,
Emma Brunskill
ICML
2022
Model Selection in Batch Policy Optimization
Jonathan Lee
,
George Tucker
,
Ofir Nachum
,
Bo Dai
AISTATS
2021
Online Model Selection for Reinforcement Learning with Function Approximation
Jonathan Lee
,
Aldo Pacchiano
,
Vidya Muthukumar
,
Weihao Kong
,
Emma Brunskill
ICML
2020
Accelerated Message Passing for Entropy-Regularized MAP Inference
Jonathan Lee
,
Aldo Pacchiano
,
Peter Bartlett
,
Michael Jordan
AISTATS
2020
Convergence Rates of Smooth Message Passing with Rounding in Entropy-Regularized MAP Inference
Jonathan Lee
,
Aldo Pacchiano
,
Michael Jordan
AISTATS
2020
Online Learning with Continuous Variations: Dynamic Regret and Reductions
Ching-An Cheng
,
Jonathan Lee
,
Ken Goldberg
,
Byron Boots
CoRL
2019
On-Policy Robot Imitation Learning from a Converging Supervisor
Ashwin Balakrishna
,
Brijen Thananjeyan
,
Jonathan Lee
,
Felix Li
,
Arsh Zahed
,
Joseph E. Gonzalez
,
Ken Goldberg
CoRL
2017
DART: Noise Injection for Robust Imitation Learning
Michael Laskey
,
Jonathan Lee
,
Roy Fox
,
Anca D. Dragan
,
Ken Goldberg