Leqi, Liu

22 publications

ICLR 2025 A Common Pitfall of Margin-Based Language Model Alignment: Gradient Entanglement Hui Yuan, Yifan Zeng, Yue Wu, Huazheng Wang, Mengdi Wang, Liu Leqi
TMLR 2025 Accounting for AI and Users Shaping One Another: The Role of Mathematical Models Sarah Dean, Evan Dong, Meena Jagadeesan, Liu Leqi
ICML 2025 EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations Haotian Zhai, Connor Lawless, Ellen Vitercik, Liu Leqi
NeurIPS 2025 ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning Ruiyang Zhou, Shuozhe Li, Amy Zhang, Liu Leqi
NeurIPS 2025 More of the Same: Persistent Representational Harms Under Increased Representation Jennifer Mickel, Maria De-Arteaga, Liu Leqi, Kevin Tian
ICLR 2025 Prompting Fairness: Integrating Causality to Debias Large Language Models Jingling Li, Zeyu Tang, Xiaoyu Liu, Peter Spirtes, Kun Zhang, Liu Leqi, Yang Liu
NeurIPSW 2024 A Common Pitfall of Margin-Based Language Model Alignment: Gradient Entanglement Hui Yuan, Yifan Zeng, Yue Wu, Huazheng Wang, Mengdi Wang, Liu Leqi
ICLRW 2024 Personalized Language Modeling from Personalized Human Feedback Xinyu Li, Zachary Chase Lipton, Liu Leqi
NeurIPSW 2024 Personalized Language Modeling from Personalized Human Feedback Xinyu Li, Ruiyang Zhou, Zachary Chase Lipton, Liu Leqi
ICLRW 2024 Steering LLMs Towards Unbiased Responses: A Causality-Guided Debiasing Framework Jingling Li, Zeyu Tang, Xiaoyu Liu, Peter Spirtes, Kun Zhang, Liu Leqi, Yang Liu
AISTATS 2022 Off-Policy Risk Assessment for Markov Decision Processes Audrey Huang, Liu Leqi, Zachary Lipton, Kamyar Azizzadenesheli
ICML 2022 Action-Sufficient State Representation Learning for Control with Structural Constraints Biwei Huang, Chaochao Lu, Liu Leqi, Jose Miguel Hernandez-Lobato, Clark Glymour, Bernhard Schölkopf, Kun Zhang
ICLRW 2022 Action-Sufficient State Representation Learning for Control with Structural Constraints Biwei Huang, Chaochao Lu, Liu Leqi, José Miguel Hernández-Lobato, Clark Glymour, Bernhard Schölkopf, Kun Zhang
AAAI 2022 Modeling Attrition in Recommender Systems with Departing Bandits Omer Ben-Porat, Lee Cohen, Liu Leqi, Zachary C. Lipton, Yishay Mansour
ICML 2022 Supervised Learning with General Risk Functionals Liu Leqi, Audrey Huang, Zachary Lipton, Kamyar Azizzadenesheli
NeurIPS 2021 Off-Policy Risk Assessment in Contextual Bandits Audrey Huang, Liu Leqi, Zachary Lipton, Kamyar Azizzadenesheli
NeurIPS 2021 Rebounding Bandits for Modeling Satiation Effects Liu Leqi, Fatma Kilinc Karzan, Zachary Lipton, Alan Montgomery
UAI 2020 Automated Dependence Plots David Inouye, Liu Leqi, Joon Sik Kim, Bryon Aragam, Pradeep Ravikumar
ICML 2020 Uniform Convergence of Rank-Weighted Learning Justin Khim, Liu Leqi, Adarsh Prasad, Pradeep Ravikumar
NeurIPS 2019 Game Design for Eliciting Distinguishable Behavior Fan Yang, Liu Leqi, Yifan Wu, Zachary Lipton, Pradeep K Ravikumar, Tom M. Mitchell, William W. Cohen
NeurIPS 2019 On Human-Aligned Risk Minimization Liu Leqi, Adarsh Prasad, Pradeep K Ravikumar
NeurIPS 2018 The Sample Complexity of Semi-Supervised Learning with Nonparametric Mixture Models Chen Dan, Liu Leqi, Bryon Aragam, Pradeep K Ravikumar, Eric P Xing