Li, Zeman

8 publications

ICLR 2025 Addax: Utilizing Zeroth-Order Gradients to Improve Memory Efficiency and Performance of SGD for Fine-Tuning Language Models Zeman Li, Xinwei Zhang, Peilin Zhong, Yuan Deng, Meisam Razaviyayn, Vahab Mirrokni
NeurIPS 2025 PiKE: Adaptive Data Mixing for Large-Scale Multi-Task Learning Under Low Gradient Conflicts Zeman Li, Yuan Deng, Peilin Zhong, Meisam Razaviyayn, Vahab Mirrokni
ICLRW 2025 PiKE: Adaptive Data Mixing for Multi-Task Learning Under Low Gradient Conflicts Zeman Li, Yuan Deng, Peilin Zhong, Meisam Razaviyayn, Vahab Mirrokni
ICML 2025 Synthetic Text Generation for Training Large Language Models via Gradient Matching Dang Nguyen, Zeman Li, Mohammadhossein Bateni, Vahab Mirrokni, Meisam Razaviyayn, Baharan Mirzasoleiman
ICLRW 2024 Addax: Memory-Efficient Fine-Tuning of Language Models with a Combination of Forward-Backward and Forward-Only Passes Zeman Li, Xinwei Zhang, Meisam Razaviyayn
NeurIPSW 2024 Addax: Utilizing Zeroth-Order Gradients to Improve Memory Efficiency and Performance of SGD for Fine-Tuning Language Models Zeman Li, Xinwei Zhang, Peilin Zhong, Yuan Deng, Meisam Razaviyayn, Vahab Mirrokni
NeurIPSW 2024 Addax: Utilizing Zeroth-Order Gradients to Improve Memory Efficiency and Performance of SGD for Fine-Tuning Language Models Zeman Li, Xinwei Zhang, Peilin Zhong, Yuan Deng, Meisam Razaviyayn, Vahab Mirrokni
ICML 2024 Optimal Differentially Private Model Training with Public Data Andrew Lowy, Zeman Li, Tianjian Huang, Meisam Razaviyayn