ML Anthology
Authors
Search
About
Liaw, Christopher
15 publications
NeurIPS
2025
A Unified Approach to Submodular Maximization Under Noise
Kshipra Bhawalkar
,
Yang Cai
,
Zhe Feng
,
Christopher Liaw
,
Tao Lin
ALT
2025
Agnostic Private Density Estimation for GMMs via List Global Stability
Mohammad Afzali
,
Hassan Ashtiani
,
Christopher Liaw
JMLR
2024
Continuous Prediction with Experts' Advice
Nicholas J. A. Harvey
,
Christopher Liaw
,
Victor S. Portella
ALT
2024
Mixtures of Gaussians Are Privately Learnable with a Polynomial Number of Samples
Mohammad Afzali
,
Hassan Ashtiani
,
Christopher Liaw
ICML
2023
Improved Online Learning Algorithms for CTR Prediction in Ad Auctions
Zhe Feng
,
Christopher Liaw
,
Zixin Zhou
ICML
2023
Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models
Jamil Arbas
,
Hassan Ashtiani
,
Christopher Liaw
COLT
2022
Private and Polynomial Time Algorithms for Learning Gaussians and Beyond
Hassan Ashtiani
,
Christopher Liaw
AAAI
2021
Convergence Analysis of No-Regret Bidding Algorithms in Repeated Auctions
Zhe Feng
,
Guru Guruganesh
,
Christopher Liaw
,
Aranyak Mehta
,
Abhishek Sethi
NeurIPS
2021
Privately Learning Mixtures of Axis-Aligned Gaussians
Ishaq Aden-Ali
,
Hassan Ashtiani
,
Christopher Liaw
NeurIPS
2020
Improved Algorithms for Online Submodular Maximization via First-Order Regret Bounds
Nicholas Harvey
,
Christopher Liaw
,
Tasuku Soma
ICLR
2019
A New Dog Learns Old Tricks: RL Finds Classic Optimization Algorithms
Weiwei Kong
,
Christopher Liaw
,
Aranyak Mehta
,
D. Sivakumar
JMLR
2019
Nearly-Tight VC-Dimension and Pseudodimension Bounds for Piecewise Linear Neural Networks
Peter L. Bartlett
,
Nick Harvey
,
Christopher Liaw
,
Abbas Mehrabian
COLT
2019
Tight Analyses for Non-Smooth Stochastic Gradient Descent
Nicholas J. A. Harvey
,
Christopher Liaw
,
Yaniv Plan
,
Sikander Randhawa
NeurIPS
2018
Nearly Tight Sample Complexity Bounds for Learning Mixtures of Gaussians via Sample Compression Schemes
Hassan Ashtiani
,
Shai Ben-David
,
Nicholas Harvey
,
Christopher Liaw
,
Abbas Mehrabian
,
Yaniv Plan
COLT
2017
Nearly-Tight VC-Dimension Bounds for Piecewise Linear Neural Networks
Nick Harvey
,
Christopher Liaw
,
Abbas Mehrabian