Lillicrap, Timothy P.

14 publications

ICLR 2025 AndroidWorld: A Dynamic Benchmarking Environment for Autonomous Agents Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice Li, William E Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Kenji Toyama, Robert James Berry, Divya Tyamagundlu, Timothy P Lillicrap, Oriana Riva
TMLR 2025 Exploring Exploration with Foundation Agents in Interactive Environments Daniel P. Sawyer, Nan Rosemary Ke, Hubert Soyer, Martin Engelcke, John Reid, David P Reichert, Drew A. Hudson, Alexander Lerchner, Danilo Jimenez Rezende, Timothy P Lillicrap, Michael Curtis Mozer, Jane X Wang
ICLRW 2025 Societal Alignment Frameworks Can Improve LLM Alignment Karolina Stanczak, Nicholas Meade, Mehar Bhatia, Hattie Zhou, Konstantin Böttinger, Jeremy Barnes, Jason Stanley, Jessica Montgomery, Richard Zemel, Nicolas Papernot, Nicolas Chapados, Denis Therien, Timothy P Lillicrap, Ana Marasovic, Sylvie Delacroix, Gillian K Hadfield, Siva Reddy
ICMLW 2024 Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving Aniket Rajiv Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy P Lillicrap, Danilo Jimenez Rezende, Yoshua Bengio, Michael Curtis Mozer, Sanjeev Arora
NeurIPSW 2024 Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, Michael Shieh
ICLR 2023 Evaluating Long-Term Memory in 3D Mazes Jurgis Pašukonis, Timothy P Lillicrap, Danijar Hafner
UAI 2022 Equilibrium Aggregation: Encoding Sets via Optimization Sergey Bartunov, Fabian B. Fuchs, Timothy P. Lillicrap
NeurIPSW 2022 Evaluating Long-Term Memory in 3D Mazes Jurgis Pašukonis, Timothy P Lillicrap, Danijar Hafner
ICLR 2021 Mastering Atari with Discrete World Models Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, Jimmy Ba
ICLR 2020 Compressive Transformers for Long-Range Sequence Modelling Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Timothy P. Lillicrap
ICLR 2020 Meta-Learning Deep Energy-Based Memory Models Sergey Bartunov, Jack W Rae, Simon Osindero, Timothy P Lillicrap
ICML 2017 Learning to Learn Without Gradient Descent by Gradient Descent Yutian Chen, Matthew W. Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P. Lillicrap, Matt Botvinick, Nando Freitas
ICLR 2017 Q-Prop: Sample-Efficient Policy Gradient with an Off-Policy Critic Shixiang Gu, Timothy P. Lillicrap, Zoubin Ghahramani, Richard E. Turner, Sergey Levine
ICLR 2016 Continuous Control with Deep Reinforcement Learning Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra