Lin, Hsuan-Tien

52 publications

TMLR 2026 Intra-Cluster Mixup: An Effective Data Augmentation Technique for Complementary-Label Learning Tan-Ha Mai, Hsuan-Tien Lin
TMLR 2025 An Expanded Benchmark That Rediscovers and Affirms the Edge of Uncertainty Sampling for Active Learning in Tabular Datasets Po-Yi Lu, Yi-Jie Cheng, Chun-Liang Li, Hsuan-Tien Lin
TMLR 2025 CLImage: Human-Annotated Datasets for Complementary-Label Learning Hsiu-Hsuan Wang, Mai Tan Ha, Nai-Xuan Ye, Wei-I Lin, Hsuan-Tien Lin
ICCV 2025 Soft Separation and Distillation: Toward Global Uniformity in Federated Unsupervised Learning Hung-Chieh Fang, Hsuan-Tien Lin, Irwin King, Yifei Zhang
ICML 2025 Tackling Dimensional Collapse Toward Comprehensive Universal Domain Adaptation Hung-Chieh Fang, Po-Yi Lu, Hsuan-Tien Lin
ACML 2024 Asian Conference on Machine Learning: Preface Vu Nguyen, Hsuan-Tien Lin
AISTATS 2024 CAD-DA: Controllable Anomaly Detection After Domain Adaptation by Statistical Inference Vo Nguyen Le Duy, Hsuan-Tien Lin, Ichiro Takeuchi
ECCV 2024 SLIM: Spuriousness Mitigation with Minimal Human Annotations Xiwei Xuan, Ziquan Deng, Hsuan-Tien Lin, Kwan-Liu Ma
NeurIPS 2024 TableRAG: Million-Token Table Understanding with Language Models Si-An Chen, Lesly Miculicich, Julian Martin Eisenschlos, Zifeng Wang, Zilong Wang, Yanfei Chen, Yasuhisa Fujii, Hsuan-Tien Lin, Chen-Yu Lee, Tomas Pfister
MLJ 2023 Learning Key Steps to Attack Deep Reinforcement Learning Agents Chien-Min Yu, Ming-Hsin Chen, Hsuan-Tien Lin
CVPR 2023 Semi-Supervised Domain Adaptation with Source Label Adaptation Yu-Chu Yu, Hsuan-Tien Lin
NeurIPSW 2022 Improving Conditional Score-Based Generation with Calibrated Classification and Joint Training Paul Kuo-Ming Huang, Si-An Chen, Hsuan-Tien Lin
NeurIPS 2021 A Unified View of cGANs with and Without Classifiers Si-An Chen, Chun-Liang Li, Hsuan-Tien Lin
ICLR 2021 Adaptive and Generative Zero-Shot Learning Yu-Ying Chou, Hsuan-Tien Lin, Tyng-Luh Liu
NeurIPSW 2021 Improving Model Compatibility of Generative Adversarial Networks by Boundary Calibration Si-An Chen, Chun-Liang Li, Hsuan-Tien Lin
NeurIPSW 2021 On the Role of Pre-Training for Meta Few-Shot Learning Chia-You Chen, Hsuan-Tien Lin, Masashi Sugiyama, Gang Niu
MLJ 2020 Active Deep Q-Learning with Demonstration Si-An Chen, Voot Tangkaratt, Hsuan-Tien Lin, Masashi Sugiyama
ECML-PKDD 2020 Benchmarking Tropical Cyclone Rapid Intensification with Satellite Images and Attention-Based Deep Models Ching-Yuan Bai, Buo-Fu Chen, Hsuan-Tien Lin
ACML 2020 Learning from Label Proportions with Consistency Regularization Kuen-Han Tsai, Hsuan-Tien Lin
ICML 2020 Unbiased Risk Estimators Can Mislead: A Case Study of Learning with Complementary Labels Yu-Ting Chou, Gang Niu, Hsuan-Tien Lin, Masashi Sugiyama
ICLRW 2019 A Pseudo-Label Method for Coarse-to-Fine Multi-Label Learning with Limited Supervision Cheng-Yu Hsieh, Miao Xu, Gang Niu, Hsuan-Tien Lin, Masashi Sugiyama
MLJ 2019 Annotation Cost-Sensitive Active Learning by Tree Sampling Yu-Lin Tsou, Hsuan-Tien Lin
ACML 2019 Deep Learning with a Rethinking Structure for Multi-Label Classification Yao-Yuan Yang, Yi-An Lin, Hong-Min Chu, Hsuan-Tien Lin
MLJ 2019 Dynamic Principal Projection for Cost-Sensitive Online Multi-Label Classification Hong-Min Chu, Kuan-Hao Huang, Hsuan-Tien Lin
AAAI 2018 A Deep Model with Local Surrogate Loss for General Cost-Sensitive Multi-Label Learning Cheng-Yu Hsieh, Yi-An Lin, Hsuan-Tien Lin
AAAI 2018 Compatibility Family Learning for Item Recommendation and Generation Yong-Siang Shih, Kai-Yueh Chang, Hsuan-Tien Lin, Min Sun
NeurIPS 2018 REFUEL: Exploring Sparse Features in Deep Reinforcement Learning for Fast Disease Diagnosis Yu-Shao Peng, Kai-Fu Tang, Hsuan-Tien Lin, Edward Chang
MLJ 2017 Cost-Sensitive Label Embedding for Multi-Label Classification Kuan-Hao Huang, Hsuan-Tien Lin
MLJ 2017 Progressive Random K-Labelsets for Cost-Sensitive Multi-Label Classification Yuping Wu, Hsuan-Tien Lin
IJCAI 2016 Cost-Aware Pre-Training for Multiclass Cost-Sensitive Deep Learning Yu-An Chung, Hsuan-Tien Lin, Shao-Wen Yang
AISTATS 2016 Rivalry of Two Families of Algorithms for Memory-Restricted Streaming PCA Chun-Liang Li, Hsuan-Tien Lin, Chi-Jen Lu
AAAI 2015 Active Learning by Learning Wei-Ning Hsu, Hsuan-Tien Lin
JMLR 2015 Combination of Feature Engineering and Ranking Models for Paper-Author Identification in KDD Cup 2013 Chun-Liang Li, Yu-Chuan Su, Ting-Wei Lin, Cheng-Hao Tsai, Wei-Cheng Chang, Kuan-Hao Huang, Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen Lu, Chun-Pai Yang, Cheng-Xia Chang, Wei-Sheng Chin, Yu-Chin Juan, Hsiao-Yu Tung, Jui-Pin Wang, Cheng-Kuang Wei, Felix Wu, Tu-Chun Yin, Tong Yu, Yong Zhuang, Shou-de Lin, Hsuan-Tien Lin, Chih-Jen Lin
ICML 2014 Boosting with Online Binary Learners for the Multiclass Bandit Problem Shang-Tse Chen, Hsuan-Tien Lin, Chi-Jen Lu
ICML 2014 Condensed Filter Tree for Cost-Sensitive Multi-Label Classification Chun-Liang Li, Hsuan-Tien Lin
JMLR 2014 Effective String Processing and Matching for Author Disambiguation Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, Felix Wu, Hsiao-Yu Tung, Tong Yu, Jui-Pin Wang, Cheng-Xia Chang, Chun-Pai Yang, Wei-Cheng Chang, Kuan-Hao Huang, Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen Lu, Yu-Chuan Su, Cheng-Kuang Wei, Tu-Chun Yin, Chun-Liang Li, Ting-Wei Lin, Cheng-Hao Tsai, Shou-De Lin, Hsuan-Tien Lin, Chih-Jen Lin
ACML 2014 Pseudo-Reward Algorithms for Contextual Bandits with Linear Payoff Functions Ku-Chun Chou, Hsuan-Tien Lin, Chao-Kai Chiang, Chi-Jen Lu
ACML 2014 Reduction from Cost-Sensitive Multiclass Classification to One-Versus-One Binary Classification Hsuan-Tien Lin
ACML 2013 Active Sampling of Pairs and Points for Large-Scale Linear Bipartite Ranking Wei-Yuan Shen, Hsuan-Tien Lin
ACML 2012 Active Learning with Hinted Support Vector Machine Chun-Liang Li, Chun-Sung Ferng, Hsuan-Tien Lin
ICML 2012 An Online Boosting Algorithm with Theoretical Justifications Shang-Tse Chen, Hsuan-Tien Lin, Chi-Jen Lu
NeurIPS 2012 Feature-Aware Label Space Dimension Reduction for Multi-Label Classification Yao-nan Chen, Hsuan-tien Lin
ACML 2011 Multi-Label Active Learning with Auxiliary Learner Chen-Wei Hung, Hsuan-Tien Lin
ACML 2011 Multi-Label Classification with Error-Correcting Codes Chung-Sung Ferng, Hsuan-Tien Lin
CVPR 2011 Unsupervised Auxiliary Visual Words Discovery for Large-Scale Image Object Retrieval Yin-Hsi Kuo, Hsuan-Tien Lin, Wen-Huang Cheng, Yi-Hsuan Yang, Winston H. Hsu
ICML 2010 One-Sided Support Vector Regression for Multiclass Cost-Sensitive Classification Han-Hsing Tu, Hsuan-Tien Lin
JMLR 2008 Support Vector Machinery for Infinite Ensemble Learning Hsuan-Tien Lin, Ling Li
MLJ 2007 A Note on Platt's Probabilistic Outputs for Support Vector Machines Hsuan-Tien Lin, Chih-Jen Lin, Ruby C. Weng
ALT 2006 Large-Margin Thresholded Ensembles for Ordinal Regression: Theory and Practice Hsuan-Tien Lin, Ling Li
NeurIPS 2006 Ordinal Regression by Extended Binary Classification Ling Li, Hsuan-tien Lin
ECML-PKDD 2005 Infinite Ensemble Learning with Support Vector Machines Hsuan-Tien Lin, Ling Li
NeCo 2002 A Note on the Decomposition Methods for Support Vector Regression Shuo-Peng Liao, Hsuan-Tien Lin, Chih-Jen Lin