Lin, Xiaoqiang

20 publications

ICLRW 2025 Active Human Feedback Collection via Neural Contextual Dueling Bandits Arun Verma, Xiaoqiang Lin, Zhongxiang Dai, Daniela Rus, Bryan Kian Hsiang Low
ICLR 2025 Efficient Top-M Data Values Identification for Data Selection Xiaoqiang Lin, Xinyi Xu, See-Kiong Ng, Bryan Kian Hsiang Low
ICML 2025 NICE Data Selection for Instruction Tuning in LLMs with Non-Differentiable Evaluation Metric Jingtan Wang, Xiaoqiang Lin, Rui Qiao, Pang Wei Koh, Chuan-Sheng Foo, Bryan Kian Hsiang Low
ICLRW 2025 NICE: Non-Differentiable Evaluation Metric-Based Data Selection for Instruction Tuning Jingtan Wang, Xiaoqiang Lin, Rui Qiao, Pang Wei Koh, Chuan-Sheng Foo, Bryan Kian Hsiang Low
ICLR 2025 Neural Dueling Bandits: Preference-Based Optimization with Human Feedback Arun Verma, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, Bryan Kian Hsiang Low
NeurIPS 2024 DETAIL: Task DEmonsTration Attribution for Interpretable In-Context Learning Zijian Zhou, Xiaoqiang Lin, Xinyi Xu, Alok Prakash, Daniela Rus, Bryan Kian Hsiang Low
ICMLW 2024 DETAIL: Task DEmonsTration Attribution for Interpretable In-Context Learning Zijian Zhou, Xiaoqiang Lin, Xinyi Xu, Alok Prakash, Daniela Rus, Bryan Kian Hsiang Low
ICML 2024 Distributionally Robust Data Valuation Xiaoqiang Lin, Xinyi Xu, Zhaoxuan Wu, See-Kiong Ng, Bryan Kian Hsiang Low
ICML 2024 Helpful or Harmful Data? Fine-Tuning-Free Shapley Attribution for Explaining Language Model Predictions Jingtan Wang, Xiaoqiang Lin, Rui Qiao, Chuan-Sheng Foo, Bryan Kian Hsiang Low
ICMLW 2024 Heterogeneous Federated Zeroth-Order Optimization Using Gradient Surrogates Yao Shu, Xiaoqiang Lin, Zhongxiang Dai, Bryan Kian Hsiang Low
NeurIPS 2024 Localized Zeroth-Order Prompt Optimization Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan Wu, Xiaoqiang Lin, Zhongxiang Dai, See-Kiong Ng, Bryan Kian Hsiang Low
ICMLW 2024 Localized Zeroth-Order Prompt Optimization Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan Wu, Xiaoqiang Lin, Zhongxiang Dai, See-Kiong Ng, Bryan Kian Hsiang Low
ICMLW 2024 Neural Dueling Bandits Arun Verma, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, Bryan Kian Hsiang Low
NeurIPS 2024 Prompt Optimization with EASE? Efficient Ordering-Aware Automated Selection of Exemplars Zhaoxuan Wu, Xiaoqiang Lin, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jaillet, Bryan Kian Hsiang Low
ICMLW 2024 Prompt Optimization with EASE? Efficient Ordering-Aware Automated Selection of Exemplars Zhaoxuan Wu, Xiaoqiang Lin, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jaillet, Bryan Kian Hsiang Low
ICMLW 2024 Prompt Optimization with Human Feedback Xiaoqiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick Jaillet, Bryan Kian Hsiang Low
ICML 2024 Use Your INSTINCT: INSTruction Optimization for LLMs usIng Neural Bandits Coupled with Transformers Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jaillet, Bryan Kian Hsiang Low
ICML 2023 Fair yet Asymptotically Equal Collaborative Learning Xiaoqiang Lin, Xinyi Xu, See-Kiong Ng, Chuan-Sheng Foo, Bryan Kian Hsiang Low
NeurIPSW 2023 Use Your INSTINCT: INSTruction Optimization usIng Neural Bandits Coupled with Transformers Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jaillet, Bryan Kian Hsiang Low
IJCAI 2020 Joint Representation Learning of Legislator and Legislation for Roll Call Prediction Yuqiao Yang, Xiaoqiang Lin, Geng Lin, Zengfeng Huang, Changjian Jiang, Zhongyu Wei