Lipman, Yaron

38 publications

NeurIPS 2025 Corrector Sampling in Language Models Itai Gat, Neta Shaul, Uriel Singer, Yaron Lipman
ICLR 2025 Flow Matching with General Discrete Paths: A Kinetic-Optimal Perspective Neta Shaul, Itai Gat, Marton Havasi, Daniel Severo, Anuroop Sriram, Peter Holderrieth, Brian Karrer, Yaron Lipman, Ricky T. Q. Chen
ICLR 2025 Generator Matching: Generative Modeling with Arbitrary Markov Processes Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer, Ricky T. Q. Chen, Yaron Lipman
NeurIPS 2025 Transition Matching: Scalable and Flexible Generative Modeling Neta Shaul, Uriel Singer, Itai Gat, Yaron Lipman
ICML 2024 Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models Neta Shaul, Uriel Singer, Ricky T. Q. Chen, Matthew Le, Ali Thabet, Albert Pumarola, Yaron Lipman
ICLR 2024 Bespoke Solvers for Generative Flow Models Neta Shaul, Juan Perez, Ricky T. Q. Chen, Ali Thabet, Albert Pumarola, Yaron Lipman
ICML 2024 D-Flow: Differentiating Through Flows for Controlled Generation Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, Yaron Lipman
NeurIPS 2024 Discrete Flow Matching Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi, Yaron Lipman
ICLR 2024 Flow Matching on General Geometries Ricky T. Q. Chen, Yaron Lipman
ICLR 2024 Generalized Schrödinger Bridge Matching Guan-Horng Liu, Yaron Lipman, Maximilian Nickel, Brian Karrer, Evangelos Theodorou, Ricky T. Q. Chen
CVPR 2024 Mosaic-SDF for 3D Generative Models Lior Yariv, Omri Puny, Oran Gafni, Yaron Lipman
ICML 2023 Equivariant Polynomials for Graph Neural Networks Omri Puny, Derek Lim, Bobak Kiani, Haggai Maron, Yaron Lipman
ICLRW 2023 Expressive Sign Equivariant Networks for Spectral Geometric Learning Derek Lim, Joshua Robinson, Stefanie Jegelka, Yaron Lipman, Haggai Maron
ICLR 2023 Flow Matching for Generative Modeling Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, Matthew Le
ICML 2023 MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation Omer Bar-Tal, Lior Yariv, Yaron Lipman, Tali Dekel
ICML 2023 Multisample Flow Matching: Straightening Flows with Minibatch Couplings Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, Ricky T. Q. Chen
ICML 2023 On Kinetic Optimal Probability Paths for Generative Models Neta Shaul, Ricky T. Q. Chen, Maximilian Nickel, Matthew Le, Yaron Lipman
JMLR 2023 Weisfeiler and Leman Go Machine Learning: The Story so Far Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin Grohe, Matthias Fey, Karsten Borgwardt
CVPR 2022 Frame Averaging for Equivariant Shape Space Learning Matan Atzmon, Koki Nagano, Sanja Fidler, Sameh Khamis, Yaron Lipman
ICLR 2022 Frame Averaging for Invariant and Equivariant Network Design Omri Puny, Matan Atzmon, Edward J. Smith, Ishan Misra, Aditya Grover, Heli Ben-Hamu, Yaron Lipman
ICML 2022 Matching Normalizing Flows and Probability Paths on Manifolds Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Maximillian Nickel, Aditya Grover, Ricky T. Q. Chen, Yaron Lipman
NeurIPS 2022 Neural Conservation Laws: A Divergence-Free Perspective Jack Richter-Powell, Yaron Lipman, Ricky T. Q. Chen
NeurIPS 2022 VisCo Grids: Surface Reconstruction with Viscosity and Coarea Grids Albert Pumarola, Artsiom Sanakoyeu, Lior Yariv, Ali Thabet, Yaron Lipman
NeurIPS 2021 Moser Flow: Divergence-Based Generative Modeling on Manifolds Noam Rozen, Aditya Grover, Maximilian Nickel, Yaron Lipman
ICML 2021 Phase Transitions, Distance Functions, and Implicit Neural Representations Yaron Lipman
ICML 2021 Riemannian Convex Potential Maps Samuel Cohen, Brandon Amos, Yaron Lipman
ICLR 2021 SALD: Sign Agnostic Learning with Derivatives Matan Atzmon, Yaron Lipman
NeurIPS 2021 Volume Rendering of Neural Implicit Surfaces Lior Yariv, Jiatao Gu, Yoni Kasten, Yaron Lipman
ICML 2020 Implicit Geometric Regularization for Learning Shapes Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, Yaron Lipman
NeurIPS 2020 Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen, Yaron Lipman
ICLR 2020 On Universal Equivariant Set Networks Nimrod Segol, Yaron Lipman
NeurIPS 2020 Set2Graph: Learning Graphs from Sets Hadar Serviansky, Nimrod Segol, Jonathan Shlomi, Kyle Cranmer, Eilam Gross, Haggai Maron, Yaron Lipman
NeurIPS 2019 Controlling Neural Level Sets Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, Yaron Lipman
ICLR 2019 Invariant and Equivariant Graph Networks Haggai Maron, Heli Ben-Hamu, Nadav Shamir, Yaron Lipman
ICML 2019 On the Universality of Invariant Networks Haggai Maron, Ethan Fetaya, Nimrod Segol, Yaron Lipman
NeurIPS 2019 Provably Powerful Graph Networks Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, Yaron Lipman
NeurIPS 2018 (Probably) Concave Graph Matching Haggai Maron, Yaron Lipman
ICCV 2015 Wide Baseline Stereo Matching with Convex Bounded Distortion Constraints Meirav Galun, Tal Amir, Tal Hassner, Ronen Basri, Yaron Lipman