Lippe, Phillip

26 publications

ICLR 2025 Language Agents Meet Causality -- Bridging LLMs and Causal World Models John Gkountouras, Matthias Lindemann, Phillip Lippe, Efstratios Gavves, Ivan Titov
NeurIPS 2025 Learning Interactive World Model for Object-Centric Reinforcement Learning Fan Feng, Phillip Lippe, Sara Magliacane
NeurIPS 2025 Tiled Flash Linear Attention: More Efficient Linear RNN and xLSTM Kernels Maximilian Beck, Korbinian Pöppel, Phillip Lippe, Sepp Hochreiter
ICLRW 2025 Tiled Flash Linear Attention: More Efficient Linear RNN and xLSTM Kernels Maximilian Beck, Korbinian Pöppel, Phillip Lippe, Sepp Hochreiter
ICML 2025 xLSTM 7b: A Recurrent LLM for Fast and Efficient Inference Maximilian Beck, Korbinian Pöppel, Phillip Lippe, Richard Kurle, Patrick M Blies, Günter Klambauer, Sebastian Böck, Sepp Hochreiter
ICLRW 2025 xLSTM 7b: A Recurrent LLM for Fast and Efficient Inference Maximilian Beck, Korbinian Pöppel, Phillip Lippe, Richard Kurle, Patrick M Blies, Günter Klambauer, Sebastian Böck, Sepp Hochreiter
CVPR 2024 How to Train Neural Field Representations: A Comprehensive Study and Benchmark Samuele Papa, Riccardo Valperga, David Knigge, Miltiadis Kofinas, Phillip Lippe, Jan-Jakob Sonke, Efstratios Gavves
NeurIPSW 2024 NARAIM: Native Aspect Ratio Autoregressive Image Models Daniel Gallo Fernández, Robert van der Klis, Răzvan-Andrei Matișan, Janusz Partyka, Samuele Papa, Efstratios Gavves, Phillip Lippe
ICMLW 2024 STREAM: Embodied Reasoning Through Code Generation Daniil Cherniavskii, Phillip Lippe, Andrii Zadaianchuk, Efstratios Gavves
CLeaR 2024 Towards the Reusability and Compositionality of Causal Representations Davide Talon, Phillip Lippe, Stuart James, Alessio Del Bue, Sara Magliacane
UAI 2023 BISCUIT: Causal Representation Learning from Binary Interactions Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, Efstratios Gavves
ICLR 2023 Causal Representation Learning for Instantaneous and Temporal Effects in Interactive Systems Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, Efstratios Gavves
ICLR 2023 Differentiable Mathematical Programming for Object-Centric Representation Learning Adeel Pervez, Phillip Lippe, Efstratios Gavves
NeurIPSW 2023 Hierarchical Causal Representation Learning Angelos Nalmpantis, Phillip Lippe, Sara Magliacane
ICMLW 2023 Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers Phillip Lippe, Bastiaan S. Veeling, Paris Perdikaris, Richard E Turner, Johannes Brandstetter
NeurIPS 2023 PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, Johannes Brandstetter
NeurIPS 2023 Rotating Features for Object Discovery Sindy Löwe, Phillip Lippe, Francesco Locatello, Max Welling
ICLR 2023 Scalable Subset Sampling with Neural Conditional Poisson Networks Adeel Pervez, Phillip Lippe, Efstratios Gavves
NeurIPSW 2023 Towards the Reusability and Compositionality of Causal Representations Davide Talon, Phillip Lippe, Stuart James, Alessio Del Bue, Sara Magliacane
ICML 2022 CITRIS: Causal Identifiability from Temporal Intervened Sequences Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, Stratis Gavves
ICLRW 2022 CITRIS: Causal Identifiability from Temporal Intervened Sequences Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, Efstratios Gavves
TMLR 2022 Complex-Valued Autoencoders for Object Discovery Sindy Löwe, Phillip Lippe, Maja Rudolph, Max Welling
ICLR 2022 Efficient Neural Causal Discovery Without Acyclicity Constraints Phillip Lippe, Taco Cohen, Efstratios Gavves
NeurIPS 2022 Weakly Supervised Causal Representation Learning Johann Brehmer, Pim de Haan, Phillip Lippe, Taco S Cohen
ICLRW 2022 Weakly Supervised Causal Representation Learning Johann Brehmer, Pim De Haan, Phillip Lippe, Taco Cohen
ICLR 2021 Categorical Normalizing Flows via Continuous Transformations Phillip Lippe, Efstratios Gavves