ML Anthology
Authors
Search
About
Lipshutz, David
13 publications
ICLR
2025
Comparing Noisy Neural Population Dynamics Using Optimal Transport Distances
Amin Nejatbakhsh
,
Victor Geadah
,
Alex H Williams
,
David Lipshutz
ICLR
2025
Discriminating Image Representations with Principal Distortions
Jenelle Feather
,
David Lipshutz
,
Sarah E Harvey
,
Alex H Williams
,
Eero P Simoncelli
NeurIPS
2025
Modeling Neural Activity with Conditionally Linear Dynamical Systems
Victor Geadah
,
Amin Nejatbakhsh
,
David Lipshutz
,
Jonathan W. Pillow
,
Alex H Williams
NeurIPSW
2024
Comparing the Local Information Geometry of Image Representations
David Lipshutz
,
Jenelle Feather
,
Sarah E Harvey
,
Alex H Williams
,
Eero P Simoncelli
ICLRW
2024
Disentangling Recurrent Neural Dynamics with Stochastic Representational Geometry
David Lipshutz
,
Amin Nejatbakhsh
,
Alex H Williams
NeurIPS
2024
Shaping the Distribution of Neural Responses with Interneurons in a Recurrent Circuit Model
David Lipshutz
,
Eero P. Simoncelli
NeurIPSW
2024
What Representational Similarity Measures Imply About Decodable Information
Sarah E Harvey
,
David Lipshutz
,
Alex H Williams
ICML
2023
Adaptive Whitening in Neural Populations with Gain-Modulating Interneurons
Lyndon Duong
,
David Lipshutz
,
David Heeger
,
Dmitri Chklovskii
,
Eero P Simoncelli
NeurIPS
2023
Adaptive Whitening with Fast Gain Modulation and Slow Synaptic Plasticity
Lyndon Duong
,
Eero P. Simoncelli
,
Dmitri B. Chklovskii
,
David Lipshutz
ICLR
2023
Interneurons Accelerate Learning Dynamics in Recurrent Neural Networks for Statistical Adaptation
David Lipshutz
,
Cengiz Pehlevan
,
Dmitri Chklovskii
NeurIPS
2022
Biological Learning of Irreducible Representations of Commuting Transformations
Alexander Genkin
,
David Lipshutz
,
Siavash Golkar
,
Tiberiu Tesileanu
,
Dmitri B. Chklovskii
NeurIPS
2020
A Biologically Plausible Neural Network for Slow Feature Analysis
David Lipshutz
,
Charles Windolf
,
Siavash Golkar
,
Dmitri B. Chklovskii
NeurIPS
2020
A Simple Normative Network Approximates Local Non-Hebbian Learning in the Cortex
Siavash Golkar
,
David Lipshutz
,
Yanis Bahroun
,
Anirvan Sengupta
,
Dmitri B. Chklovskii