Lipton, Zachary C.

27 publications

NeurIPS 2024 Rethinking LLM Memorization Through the Lens of Adversarial Compression Avi Schwarzschild, Zhili Feng, Pratyush Maini, Zachary C. Lipton, J. Zico Kolter
CVPR 2024 Scaling Laws for Data Filtering-- Data Curation Cannot Be Compute Agnostic Sachin Goyal, Pratyush Maini, Zachary C. Lipton, Aditi Raghunathan, J. Zico Kolter
NeurIPS 2024 The Fragility of Fairness: Causal Sensitivity Analysis for Fair Machine Learning Jake Fawkes, Nic Fishman, Mel Andrews, Zachary C. Lipton
NeurIPS 2024 Understanding Hallucinations in Diffusion Models Through Mode Interpolation Sumukh K Aithal, Pratyush Maini, Zachary C. Lipton, J. Zico Kolter
AAAI 2023 Moral Machine or Tyranny of the Majority? Michael Feffer, Hoda Heidari, Zachary C. Lipton
AAAI 2022 Explain, Edit, and Understand: Rethinking User Study Design for Evaluating Model Explanations Siddhant Arora, Danish Pruthi, Norman M. Sadeh, William W. Cohen, Zachary C. Lipton, Graham Neubig
AAAI 2022 Modeling Attrition in Recommender Systems with Departing Bandits Omer Ben-Porat, Lee Cohen, Liu Leqi, Zachary C. Lipton, Yishay Mansour
UAI 2021 Estimating Treatment Effects with Observed Confounders and Mediators Shantanu Gupta, Zachary C. Lipton, David Childers
AAAI 2021 Symbolic Music Generation with Transformer-GANs Aashiq Muhamed, Liang Li, Xingjian Shi, Suri Yaddanapudi, Wayne Chi, Dylan Jackson, Rahul Suresh, Zachary C. Lipton, Alexander J. Smola
ICLR 2020 Learning the Difference That Makes a Difference with Counterfactually-Augmented Data Divyansh Kaushik, Eduard Hovy, Zachary C. Lipton
ICLR 2020 Smooth Kernels Improve Adversarial Robustness and Perceptually-Aligned Gradients Haohan Wang, Xindi Wu, Songwei Ge, Zachary C. Lipton, Eric P. Xing
JMLR 2020 Tensor Regression Networks Jean Kossaifi, Zachary C. Lipton, Arinbjorn Kolbeinsson, Aran Khanna, Tommaso Furlanello, Anima Anandkumar
ICLR 2019 Active Learning with Partial Feedback Peiyun Hu, Zachary C. Lipton, Anima Anandkumar, Deva Ramanan
IJCAI 2019 AmazonQA: A Review-Based Question Answering Task Mansi Gupta, Nitish Kulkarni, Raghuveer Chanda, Anirudha Rayasam, Zachary C. Lipton
MLHC 2019 Embryo Staging with Weakly-Supervised Region Selection and Dynamically-Decoded Predictions Tingfung Lau, Nathan Ng, Julian Gingold, Nina Desai, Julian McAuley, Zachary C. Lipton
ICLR 2019 Learning Robust Representations by Projecting Superficial Statistics Out Haohan Wang, Zexue He, Zachary C. Lipton, Eric P. Xing
AAAI 2018 BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems Zachary C. Lipton, Xiujun Li, Jianfeng Gao, Lihong Li, Faisal Ahmed, Li Deng
ICLR 2018 Deep Active Learning for Named Entity Recognition Yanyao Shen, Hyokun Yun, Zachary C. Lipton, Yakov Kronrod, Animashree Anandkumar
ICLR 2018 Learning from Noisy Singly-Labeled Data Ashish Khetan, Zachary C. Lipton, Animashree Anandkumar
ICLR 2018 Semantically Decomposing the Latent Spaces of Generative Adversarial Networks Chris Donahue, Zachary C. Lipton, Akshay Balsubramani, Julian McAuley
ICLR 2018 Stochastic Activation Pruning for Robust Adversarial Defense Guneet S. Dhillon, Kamyar Azizzadenesheli, Zachary C. Lipton, Jeremy D. Bernstein, Jean Kossaifi, Aran Khanna, Animashree Anandkumar
ICML 2017 Dance Dance Convolution Chris Donahue, Zachary C. Lipton, Julian McAuley
ICLR 2017 Dance Dance Convolution Chris Donahue, Zachary C. Lipton, Julian J. McAuley
ICLR 2017 Precise Recovery of Latent Vectors from Generative Adversarial Networks Zachary C. Lipton, Subarna Tripathi
MLHC 2017 Predicting Surgery Duration with Neural Heteroscedastic Regression Nathan H Ng, Rodney A Gabriel, Julian McAuley, Charles Elkan, Zachary C Lipton
CVPRW 2017 Tensor Contraction Layers for Parsimonious Deep Nets Jean Kossaifi, Aran Khanna, Zachary C. Lipton, Tommaso Furlanello, Anima Anandkumar
MLHC 2016 Directly Modeling Missing Data in Sequences with RNNs: Improved Classification of Clinical Time Series Zachary C Lipton, David Kale, Randall Wetzel