ML Anthology
Authors
Search
About
Littman, Michael
18 publications
ICML
2025
Knowledge Retention in Continual Model-Based Reinforcement Learning
Haotian Fu
,
Yixiang Sun
,
Michael Littman
,
George Konidaris
NeurIPSW
2024
Knowledge Retention in Continual Model-Based Reinforcement Learning
Haotian Fu
,
Yixiang Sun
,
Michael Littman
,
George Konidaris
ICMLW
2024
Mitigating Partial Observability in Sequential Decision Processes via the Lambda Discrepancy
Cameron Allen
,
Aaron T. Kirtland
,
Ruo Yu Tao
,
Sam Lobel
,
Daniel Scott
,
Nicholas Petrocelli
,
Omer Gottesman
,
Ronald Parr
,
Michael Littman
,
George Konidaris
AISTATS
2023
Coarse-Grained Smoothness for Reinforcement Learning in Metric Spaces
Omer Gottesman
,
Kavosh Asadi
,
Cameron S. Allen
,
Samuel Lobel
,
George Konidaris
,
Michael Littman
AAAI
2023
Computably Continuous Reinforcement-Learning Objectives Are PAC-Learnable
Cambridge Yang
,
Michael Littman
,
Michael Carbin
ICML
2023
Meta-Learning Parameterized Skills
Haotian Fu
,
Shangqun Yu
,
Saket Tiwari
,
Michael Littman
,
George Konidaris
ICMLW
2023
Specifying Behavior Preference with Tiered Reward Functions
Zhiyuan Zhou
,
Henry Sowerby
,
Michael Littman
NeurIPSW
2021
Bayesian Exploration for Lifelong Reinforcement Learning
Haotian Fu
,
Shangqun Yu
,
Michael Littman
,
George Konidaris
AAAI
2020
Task Scoping for Efficient Planning in Open Worlds (Student Abstract)
Nishanth Kumar
,
Michael Fishman
,
Natasha Danas
,
Stefanie Tellex
,
Michael Littman
,
George Konidaris
AISTATS
2020
Value Preserving State-Action Abstractions
David Abel
,
Nate Umbanhowar
,
Khimya Khetarpal
,
Dilip Arumugam
,
Doina Precup
,
Michael Littman
ICML
2019
Finding Options That Minimize Planning Time
Yuu Jinnai
,
David Abel
,
David Hershkowitz
,
Michael Littman
,
George Konidaris
ICML
2018
Lipschitz Continuity in Model-Based Reinforcement Learning
Kavosh Asadi
,
Dipendra Misra
,
Michael Littman
ICML
2018
Policy and Value Transfer in Lifelong Reinforcement Learning
David Abel
,
Yuu Jinnai
,
Sophie Yue Guo
,
George Konidaris
,
Michael Littman
ICML
2018
State Abstractions for Lifelong Reinforcement Learning
David Abel
,
Dilip Arumugam
,
Lucas Lehnert
,
Michael Littman
ICML
2016
Near Optimal Behavior via Approximate State Abstraction
David Abel
,
David Hershkowitz
,
Michael Littman
NeurIPS
2016
Showing Versus Doing: Teaching by Demonstration
Mark K Ho
,
Michael Littman
,
James MacGlashan
,
Fiery Cushman
,
Joseph L Austerweil
ICML
2013
COCO-Q: Learning in Stochastic Games with Side Payments
Eric Sodomka
,
Elizabeth Hilliard
,
Michael Littman
,
Amy Greenwald
ICML
2013
The Cross-Entropy Method Optimizes for Quantiles
Sergiu Goschin
,
Ari Weinstein
,
Michael Littman