Littman, Michael L.

101 publications

NeurIPS 2024 Mitigating Partial Observability in Sequential Decision Processes via the Lambda Discrepancy Cameron Allen, Aaron Kirtland, Ruo Yu Tao, Sam Lobel, Daniel Scott, Nicholas Petrocelli, Omer Gottesman, Ronald Parr, Michael L. Littman, George Konidaris
NeurIPS 2022 Evaluation Beyond Task Performance: Analyzing Concepts in AlphaZero in Hex Charles Lovering, Jessica Forde, George Konidaris, Ellie Pavlick, Michael L. Littman
NeurIPS 2022 Faster Deep Reinforcement Learning with Slower Online Network Kavosh Asadi, Rasool Fakoor, Omer Gottesman, Taesup Kim, Michael L. Littman, Alexander J Smola
NeurIPS 2022 Model-Based Lifelong Reinforcement Learning with Bayesian Exploration Haotian Fu, Shangqun Yu, Michael L. Littman, George Konidaris
IJCAI 2022 On the (In)Tractability of Reinforcement Learning for LTL Objectives Cambridge Yang, Michael L. Littman, Michael Carbin
IJCAI 2022 On the Expressivity of Markov Reward (Extended Abstract) David Abel, Will Dabney, Anna Harutyunyan, Mark K. Ho, Michael L. Littman, Doina Precup, Satinder Singh
AAAI 2021 Deep Radial-Basis Value Functions for Continuous Control Kavosh Asadi, Neev Parikh, Ronald E. Parr, George Dimitri Konidaris, Michael L. Littman
AAAI 2021 Lipschitz Lifelong Reinforcement Learning Erwan Lecarpentier, David Abel, Kavosh Asadi, Yuu Jinnai, Emmanuel Rachelson, Michael L. Littman
NeurIPS 2021 On the Expressivity of Markov Reward David Abel, Will Dabney, Anna Harutyunyan, Mark K Ho, Michael L. Littman, Doina Precup, Satinder P. Singh
AAAI 2021 Towards Sample Efficient Agents Through Algorithmic Alignment (Student Abstract) Mingxuan Li, Michael L. Littman
AAAI 2020 People Do Not Just Plan, They Plan to Plan Mark K. Ho, David Abel, Jonathan D. Cohen, Michael L. Littman, Thomas L. Griffiths
JMLR 2020 Successor Features Combine Elements of Model-Free and Model-Based Reinforcement Learning Lucas Lehnert, Michael L. Littman
IJCAI 2019 DeepMellow: Removing the Need for a Target Network in Deep Q-Learning Seungchan Kim, Kavosh Asadi, Michael L. Littman, George Dimitri Konidaris
AAAI 2019 State Abstraction as Compression in Apprenticeship Learning David Abel, Dilip Arumugam, Kavosh Asadi, Yuu Jinnai, Michael L. Littman, Lawson L. S. Wong
IJCAI 2019 The Expected-Length Model of Options David Abel, John Winder, Marie desJardins, Michael L. Littman
AAAI 2019 Theory of Minds: Understanding Behavior in Groups Through Inverse Planning Michael Shum, Max Kleiman-Weiner, Michael L. Littman, Joshua B. Tenenbaum
AAAI 2018 Bandit-Based Solar Panel Control David Abel, Edward C. Williams, Stephen Brawner, Emily Reif, Michael L. Littman
ICML 2017 An Alternative SoftMax Operator for Reinforcement Learning Kavosh Asadi, Michael L. Littman
ICML 2017 Interactive Learning from Policy-Dependent Human Feedback James MacGlashan, Mark K. Ho, Robert Loftin, Bei Peng, Guan Wang, David L. Roberts, Matthew E. Taylor, Michael L. Littman
IJCAI 2015 Between Imitation and Intention Learning James MacGlashan, Michael L. Littman
AAAI 2014 A Strategy-Aware Technique for Learning Behaviors from Discrete Human Feedback Robert Tyler Loftin, James MacGlashan, Bei Peng, Matthew E. Taylor, Michael L. Littman, Jeff Huang, David L. Roberts
AAAI 2013 AAAI-13 Preface Marie desJardins, Michael L. Littman
AAAI 2013 Open-Loop Planning in Large-Scale Stochastic Domains Ari Weinstein, Michael L. Littman
AAAI 2013 Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA Marie desJardins, Michael L. Littman
AAAI 2012 Covering Number as a Complexity Measure for POMDP Planning and Learning Zongzhang Zhang, Michael L. Littman, Xiaoping Chen
ICML 2011 Apprenticeship Learning About Multiple Intentions Monica Babes, Vukosi Marivate, Kaushik Subramanian, Michael L. Littman
MLJ 2011 Introduction to the Special Issue on Empirical Evaluations in Reinforcement Learning Shimon Whiteson, Michael L. Littman
MLJ 2011 Knows What It Knows: A Framework for Self-Aware Learning Lihong Li, Michael L. Littman, Thomas J. Walsh, Alexander L. Strehl
UAI 2011 Learning Is Planning: Near Bayes-Optimal Reinforcement Learning via Monte-Carlo Tree Search John Asmuth, Michael L. Littman
ICML 2010 Classes of Multiagent Q-Learning Dynamics with Epsilon-Greedy Exploration Michael Wunder, Michael L. Littman, Monica Babes
MLJ 2010 Dimension Reduction and Its Application to Model-Based Exploration in Continuous Spaces Ali Nouri, Michael L. Littman
ICML 2010 Generalizing Apprenticeship Learning Across Hypothesis Classes Thomas J. Walsh, Kaushik Subramanian, Michael L. Littman, Carlos Diuk
AAAI 2010 Integrating Sample-Based Planning and Model-Based Reinforcement Learning Thomas J. Walsh, Sergiu Goschin, Michael L. Littman
UAI 2009 A Bayesian Sampling Approach to Exploration in Reinforcement Learning John Asmuth, Lihong Li, Michael L. Littman, Ali Nouri, David Wingate
UAI 2009 Exploring Compact Reinforcement-Learning Representations with Linear Regression Thomas J. Walsh, Istvan Szita, Carlos Diuk, Michael L. Littman
ICML 2009 Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009 Andrea Pohoreckyj Danyluk, Léon Bottou, Michael L. Littman
JMLR 2009 Provably Efficient Learning with Typed Parametric Models Emma Brunskill, Bethany R. Leffler, Lihong Li, Michael L. Littman, Nicholas Roy
JMLR 2009 Reinforcement Learning in Finite MDPs: PAC Analysis Alexander L. Strehl, Lihong Li, Michael L. Littman
UAI 2008 A Polynomial-Time Nash Equilibrium Algorithm for Repeated Stochastic Games Enrique Munoz de Cote, Michael L. Littman
ICML 2008 An Analysis of Linear Models, Linear Value-Function Approximation, and Feature Selection for Reinforcement Learning Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, Michael L. Littman
ICML 2008 An Object-Oriented Representation for Efficient Reinforcement Learning Carlos Diuk, Andre Cohen, Michael L. Littman
UAI 2008 CORL: A Continuous-State Offset-Dynamics Reinforcement Learner Emma Brunskill, Bethany R. Leffler, Lihong Li, Michael L. Littman, Nicholas Roy
ICML 2008 Democratic Approximation of Lexicographic Preference Models Fusun Yaman, Thomas J. Walsh, Michael L. Littman, Marie desJardins
AAAI 2008 Efficient Learning of Action Schemas and Web-Service Descriptions Thomas J. Walsh, Michael L. Littman
ICML 2008 Knows What It Knows: A Framework for Self-Aware Learning Lihong Li, Michael L. Littman, Thomas J. Walsh
NeurIPS 2008 Multi-Resolution Exploration in Continuous Spaces Ali Nouri, Michael L. Littman
AAAI 2008 Potential-Based Shaping in Model-Based Reinforcement Learning John Asmuth, Michael L. Littman, Robert Zinkov
ICML 2007 Analyzing Feature Generation for Value-Function Approximation Ronald Parr, Christopher Painter-Wakefield, Lihong Li, Michael L. Littman
AAAI 2007 Efficient Reinforcement Learning with Relocatable Action Models Bethany R. Leffler, Michael L. Littman, Timothy Edmunds
AAAI 2007 Efficient Structure Learning in Factored-State MDPs Alexander L. Strehl, Carlos Diuk, Michael L. Littman
MLJ 2007 Introduction to the Special Issue on Learning and Computational Game Theory Amy Greenwald, Michael L. Littman
NeurIPS 2007 Online Linear Regression and Its Application to Model-Based Reinforcement Learning Alexander L. Strehl, Michael L. Littman
UAI 2006 An Efficient Optimal-Equilibrium Algorithm for Two-Player Game Trees Michael L. Littman, Nishkam Ravi, Arjun Talwar, Martin Zinkevich
ICML 2006 Experience-Efficient Learning in Associative Bandit Problems Alexander L. Strehl, Chris Mesterharm, Michael L. Littman, Haym Hirsh
UAI 2006 Incremental Model-Based Learners with Formal Learning-Time Guarantees Alexander L. Strehl, Lihong Li, Michael L. Littman
ICML 2006 PAC Model-Free Reinforcement Learning Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, Michael L. Littman
AAAI 2006 Targeting Specific Distributions of Trajectories in MDPs David L. Roberts, Mark J. Nelson, Charles Lee Isbell Jr., Michael Mateas, Michael L. Littman
ICML 2005 A Theoretical Analysis of Model-Based Interval Estimation Alexander L. Strehl, Michael L. Littman
AAAI 2005 Activity Recognition from Accelerometer Data Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, Michael L. Littman
MLJ 2005 Corpus-Based Learning of Analogies and Semantic Relations Peter D. Turney, Michael L. Littman
NeurIPS 2005 Cyclic Equilibria in Markov Games Martin Zinkevich, Amy Greenwald, Michael L. Littman
AAAI 2005 Lazy Approximation for Solving Continuous Finite-Horizon MDPs Lihong Li, Michael L. Littman
JAIR 2005 The First Probabilistic Track of the International Planning Competition Håkan L. S. Younes, Michael L. Littman, David Weissman, John Asmuth
AAAI 2004 An Instance-Based State Representation for Network Repair Michael L. Littman, Nishkam Ravi, Eitan Fenson, Richard E. Howard
JAIR 2003 Decision-Theoretic Bidding Based on Learned Density Models in Simultaneous, Interacting Auctions Peter Stone, Robert E. Schapire, Michael L. Littman, János A. Csirik, David A. McAllester
ICML 2003 Learning Predictive State Representations Satinder Singh, Michael L. Littman, Nicholas K. Jong, David Pardoe, Peter Stone
COLT 2003 Tutorial: Learning Topics in Game-Theoretic Decision Making Michael L. Littman
ICML 2002 Modeling Auction Price Uncertainty Using Boosting-Based Conditional Density Estimation Robert E. Schapire, Peter Stone, David A. McAllester, Michael L. Littman, János A. Csirik
JAIR 2001 ATTac-2000: An Adaptive Autonomous Bidding Agent Peter Stone, Michael L. Littman, Satinder Singh, Michael J. Kearns
NeurIPS 2001 An Efficient, Exact Algorithm for Solving Tree-Structured Graphical Games Michael L. Littman, Michael J. Kearns, Satinder P. Singh
ICML 2001 Friend-or-Foe Q-Learning in General-Sum Games Michael L. Littman
UAI 2001 Graphical Models for Game Theory Michael J. Kearns, Michael L. Littman, Satinder Singh
NeurIPS 2001 PAC Generalization Bounds for Co-Training Sanjoy Dasgupta, Michael L. Littman, David A. McAllester
NeurIPS 2001 Predictive Representations of State Michael L. Littman, Richard S. Sutton
ICML 2000 Algorithm Selection Using Reinforcement Learning Michail G. Lagoudakis, Michael L. Littman
ICML 2000 Approximate Dimension Equalization in Vector-Based Information Retrieval Fan Jiang, Michael L. Littman
MLJ 2000 Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms Satinder Singh, Tommi S. Jaakkola, Michael L. Littman, Csaba Szepesvári
NeurIPS 2000 Exact Solutions to Time-Dependent MDPs Justin A. Boyan, Michael L. Littman
AAAI 2000 Reinforcement Learning for Algorithm Selection Michail G. Lagoudakis, Michael L. Littman
AAAI 2000 Towards Approximately Optimal Poker Jiefu Shi, Michael L. Littman
NeCo 1999 A Unified Analysis of Value-Function-Based Reinforcement Learning Algorithms Csaba Szepesvári, Michael L. Littman
AAAI 1999 Contingent Planning Under Uncertainty via Stochastic Satisfiability Stephen M. Majercik, Michael L. Littman
AAAI 1999 Initial Experiments in Stochastic Satisfiability Michael L. Littman
AAAI 1999 PROVERB: The Probabilistic Cruciverbalist Greg A. Keim, Noam M. Shazeer, Michael L. Littman, Sushant Agarwal, Catherine M. Cheves, Joseph Fitzgerald, Jason Grosland, Fan Jiang, Shannon Pollard, Karl Weinmeister
AAAI 1999 Solving Crossword Puzzles as Probabilistic Constraint Satisfaction Noam M. Shazeer, Michael L. Littman, Greg A. Keim
AAAI 1999 Solving Crosswords with PROVERB Michael L. Littman, Greg A. Keim, Noam M. Shazeer
ICML 1998 Learning a Language-Independent Representation for Terms from a Partially Aligned Corpus Michael L. Littman, Fan Jiang, Greg A. Keim
JAIR 1998 The Computational Complexity of Probabilistic Planning Michael L. Littman, Judy Goldsmith, Martin Mundhenk
AAAI 1998 Using Caching to Solve Larger Probabilistic Planning Problems Stephen M. Majercik, Michael L. Littman
UAI 1997 Incremental Pruning: A Simple, Fast, Exact Method for Partially Observable Markov Decision Processes Anthony R. Cassandra, Michael L. Littman, Nevin Lianwen Zhang
AAAI 1997 Probabilistic Propositional Planning: Representations and Complexity Michael L. Littman
AAAI 1997 Speeding Safely: Multi-Criteria Optimization in Probabilistic Planning Michael S. Fulkerson, Michael L. Littman, Greg A. Keim
UAI 1997 The Complexity of Plan Existence and Evaluation in Probabilistic Domains Judy Goldsmith, Michael L. Littman, Martin Mundhenk
ICML 1996 A Generalized Reinforcement-Learning Model: Convergence and Applications Michael L. Littman, Csaba Szepesvári
JAIR 1996 Reinforcement Learning: A Survey Leslie Pack Kaelbling, Michael L. Littman, Andrew W. Moore
ICML 1995 Learning Policies for Partially Observable Environments: Scaling up Michael L. Littman, Anthony R. Cassandra, Leslie Pack Kaelbling
UAI 1995 On the Complexity of Solving Markov Decision Problems Michael L. Littman, Thomas L. Dean, Leslie Pack Kaelbling
AAAI 1994 Acting Optimally in Partially Observable Stochastic Domains Anthony R. Cassandra, Leslie Pack Kaelbling, Michael L. Littman
ICML 1994 Markov Games as a Framework for Multi-Agent Reinforcement Learning Michael L. Littman
NeurIPS 1993 Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach Justin A. Boyan, Michael L. Littman
NeurIPS 1989 Generalization and Scaling in Reinforcement Learning David H. Ackley, Michael L. Littman