ML Anthology
Authors
Search
About
Liu, Jiashuo
21 publications
ICLR
2025
Going Beyond Static: Understanding Shifts with Time-Series Attribution
Jiashuo Liu
,
Nabeel Seedat
,
Peng Cui
,
Mihaela van der Schaar
ICLRW
2025
Position: What's the Next Frontier for Data-Centric AI? Data Savvy Agents!
Nabeel Seedat
,
Jiashuo Liu
,
Mihaela van der Schaar
ICML
2025
Topology-Aware Dynamic Reweighting for Distribution Shifts on Graph
Weihuang Zheng
,
Jiashuo Liu
,
Jiaxing Li
,
Jiayun Wu
,
Peng Cui
,
Youyong Kong
ICLRW
2025
Towards Human-Guided, Data-Centric LLM Co-Pilots
Evgeny Saveliev
,
Jiashuo Liu
,
Nabeel Seedat
,
Anders Boyd
,
Mihaela van der Schaar
NeurIPS
2024
Bridging Multicalibration and Out-of-Distribution Generalization Beyond Covariate Shift
Jiayun Wu
,
Jiashuo Liu
,
Peng Cui
,
Zhiwei Steven Wu
CVPR
2024
Distributionally Generative Augmentation for Fair Facial Attribute Classification
Fengda Zhang
,
Qianpei He
,
Kun Kuang
,
Jiashuo Liu
,
Long Chen
,
Chao Wu
,
Jun Xiao
,
Hanwang Zhang
ICML
2024
Domain-Wise Data Acquisition to Improve Performance Under Distribution Shift
Yue He
,
Dongbai Li
,
Pengfei Tian
,
Han Yu
,
Jiashuo Liu
,
Hao Zou
,
Peng Cui
AISTATS
2024
Enhancing Distributional Stability Among Sub-Populations
Jiashuo Liu
,
Jiayun Wu
,
Jie Peng
,
Xiaoyu Wu
,
Yang Zheng
,
Bo Li
,
Peng Cui
ICML
2024
Geometry-Calibrated DRO: Combating Over-Pessimism with Free Energy Implications
Jiashuo Liu
,
Jiayun Wu
,
Tianyu Wang
,
Hao Zou
,
Bo Li
,
Peng Cui
NeurIPSW
2024
LLM Embeddings Improve Test-Time Adaptation to Tabular $Y|X$-Shifts
Yibo Zeng
,
Jiashuo Liu
,
Henry Lam
,
Hongseok Namkoong
CVPR
2024
Rethinking the Evaluation Protocol of Domain Generalization
Han Yu
,
Xingxuan Zhang
,
Renzhe Xu
,
Jiashuo Liu
,
Yue He
,
Peng Cui
ICML
2024
Stability Evaluation Through Distributional Perturbation Analysis
Jose Blanchet
,
Peng Cui
,
Jiajin Li
,
Jiashuo Liu
NeurIPSW
2024
Stability Evaluation of Large Language Models via Distributional Perturbation Analysis
Jiashuo Liu
,
Jiajin Li
,
Peng Cui
,
Jose Blanchet
ICLR
2024
Towards Robust Out-of-Distribution Generalization Bounds via Sharpness
Yingtian Zou
,
Kenji Kawaguchi
,
Yingnan Liu
,
Jiashuo Liu
,
Mong-Li Lee
,
Wynne Hsu
NeurIPSW
2023
Geometry-Calibrated DRO: Combating Over-Pessimism with Free Energy Implications
Jiashuo Liu
,
Jiayun Wu
,
Tianyu Wang
,
Hao Zou
,
Peng Cui
ICLR
2023
Measure the Predictive Heterogeneity
Jiashuo Liu
,
Jiayun Wu
,
Renjie Pi
,
Renzhe Xu
,
Xingxuan Zhang
,
Bo Li
,
Peng Cui
NeurIPS
2023
On the Need for a Language Describing Distribution Shifts: Illustrations on Tabular Datasets
Jiashuo Liu
,
Tianyu Wang
,
Peng Cui
,
Hongseok Namkoong
NeurIPS
2022
Distributionally Robust Optimization with Data Geometry
Jiashuo Liu
,
Jiayun Wu
,
Bo Li
,
Peng Cui
ICML
2021
Heterogeneous Risk Minimization
Jiashuo Liu
,
Zheyuan Hu
,
Peng Cui
,
Bo Li
,
Zheyan Shen
NeurIPS
2021
Integrated Latent Heterogeneity and Invariance Learning in Kernel Space
Jiashuo Liu
,
Zheyuan Hu
,
Peng Cui
,
Bo Li
,
Zheyan Shen
AAAI
2021
Stable Adversarial Learning Under Distributional Shifts
Jiashuo Liu
,
Zheyan Shen
,
Peng Cui
,
Linjun Zhou
,
Kun Kuang
,
Bo Li
,
Yishi Lin