ML Anthology
Authors
Search
About
Liu, Liping
30 publications
ICML
2025
Graph Generative Pre-Trained Transformer
Xiaohui Chen
,
Yinkai Wang
,
Jiaxing He
,
Yuanqi Du
,
Soha Hassoun
,
Xiaolin Xu
,
Liping Liu
ICLRW
2025
Graph Generative Pre-Trained Transformer
Xiaohui Chen
,
Yinkai Wang
,
Jiaxing He
,
Yuanqi Du
,
Soha Hassoun
,
Xiaolin Xu
,
Liping Liu
TMLR
2025
Graph-Based Confidence Calibration for Large Language Models
Yukun Li
,
Sijia Wang
,
Lifu Huang
,
Liping Liu
ICLRW
2025
Large Language Model Is Secretly a Protein Sequence Optimizer
Yinkai Wang
,
Jiaxing He
,
Yuanqi Du
,
Xiaohui Chen
,
Jianan Canal Li
,
Liping Liu
,
Xiaolin Xu
,
Soha Hassoun
ICLR
2025
MADGEN: Mass-Spec Attends to De Novo Molecular Generation
Yinkai Wang
,
Xiaohui Chen
,
Liping Liu
,
Soha Hassoun
AISTATS
2024
Graph Pruning for Enumeration of Minimal Unsatisfiable Subsets
Panagiotis Lymperopoulos
,
Liping Liu
TMLR
2024
Incorporating Inductive Biases to Energy-Based Generative Models
Yukun Li
,
Liping Liu
NeurIPSW
2023
EDGE++: Improved Training and Sampling of EDGE
Xiaohui Chen
,
Mingyang Wu
,
Liping Liu
NeurIPSW
2023
EDGE++: Improved Training and Sampling of EDGE
Xiaohui Chen
,
Mingyang Wu
,
Liping Liu
ICML
2023
Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling
Xiaohui Chen
,
Jiaxing He
,
Xu Han
,
Liping Liu
TMLR
2023
NovelCraft: A Dataset for Novelty Detection and Discovery in Open Worlds
Cynthia Feeney
,
Sarah Schneider
,
Panagiotis Lymperopoulos
,
Liping Liu
,
Matthias Scheutz
,
Michael C Hughes
NeurIPS
2023
On Separate Normalization in Self-Supervised Transformers
Xiaohui Chen
,
Yinkai Wang
,
Yuanqi Du
,
Soha Hassoun
,
Liping Liu
NeurIPS
2023
Unifying Predictions of Deterministic and Stochastic Physics in Mesh-Reduced Space with Sequential Flow Generative Model
Luning Sun
,
Xu Han
,
Han Gao
,
Jian-Xun Wang
,
Liping Liu
NeurIPSW
2022
Exploiting Variable Correlation with Masked Modeling for Anomaly Detection in Time Series
Panagiotis Lymperopoulos
,
Yukun Li
,
Liping Liu
TMLR
2022
Interpretable Node Representation with Attribute Decoding
Xiaohui Chen
,
Xi Chen
,
Liping Liu
LoG
2022
PatchGT: Transformer over Non-Trainable Clusters for Learning Graph Representations
Han Gao
,
Xu Han
,
Jiaoyang Huang
,
Jian-Xun Wang
,
Liping Liu
ICLR
2022
Predicting Physics in Mesh-Reduced Space with Temporal Attention
Xu Han
,
Han Gao
,
Tobias Pfaff
,
Jian-Xun Wang
,
Liping Liu
TMLR
2022
Towards Accurate Subgraph Similarity Computation via Neural Graph Pruning
Linfeng Liu
,
Xu Han
,
Dawei Zhou
,
Liping Liu
ICML
2021
Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation
Xiaohui Chen
,
Xu Han
,
Jiajing Hu
,
Francisco Ruiz
,
Liping Liu
ICML
2021
Stochastic Iterative Graph Matching
Linfeng Liu
,
Michael C Hughes
,
Soha Hassoun
,
Liping Liu
AAAI
2020
Kriging Convolutional Networks
Gabriel Appleby
,
Linfeng Liu
,
Liping Liu
ACML
2020
Localizing and Amortizing: Efficient Inference for Gaussian Processes
Linfeng Liu
,
Liping Liu
AISTATS
2019
Amortized Variational Inference with Graph Convolutional Networks for Gaussian Processes
Linfeng Liu
,
Liping Liu
ICLR
2019
Delta: Deep Learning Transfer Using Feature mAP with Attention for Convolutional Networks
Xingjian Li
,
Haoyi Xiong
,
Hanchao Wang
,
Yuxuan Rao
,
Liping Liu
,
Jun Huan
NeurIPS
2017
Context Selection for Embedding Models
Liping Liu
,
Francisco Ruiz
,
Susan Athey
,
David Blei
ICML
2014
Gaussian Approximation of Collective Graphical Models
Liping Liu
,
Daniel Sheldon
,
Thomas Dietterich
ICML
2014
Learnability of the Superset Label Learning Problem
Liping Liu
,
Thomas Dietterich
NeurIPS
2012
A Conditional Multinomial Mixture Model for Superset Label Learning
Liping Liu
,
Thomas G. Dietterich
UAI
2003
A Linear Belief Function Approach to Portfolio Evaluation
Liping Liu
,
Catherine Shenoy
,
Prakash P. Shenoy
AISTATS
1995
Propagation of Gaussian Belief Functions
Liping Liu