ML Anthology
Authors
Search
About
Liu, Mingyan
21 publications
NeurIPS
2025
Learning Expandable and Adaptable Representations for Continual Learning
Ruilong Yu
,
Mingyan Liu
,
Fei Ye
,
Adrian G. Bors
,
Rongyao Hu
,
Jingling Sun
,
Shijie Zhou
ICLR
2024
Fair Classifiers That Abstain Without Harm
Tongxin Yin
,
Jean-Francois Ton
,
Ruocheng Guo
,
Yuanshun Yao
,
Mingyan Liu
,
Yang Liu
TMLR
2024
Federated Learning with Reduced Information Leakage and Computation
Tongxin Yin
,
Xuwei Tan
,
Xueru Zhang
,
Mohammad Mahdi Khalili
,
Mingyan Liu
AAAI
2024
Performative Federated Learning: A Solution to Model-Dependent and Heterogeneous Distribution Shifts
Kun Jin
,
Tongxin Yin
,
Zhongzhu Chen
,
Zeyu Sun
,
Xueru Zhang
,
Yang Liu
,
Mingyan Liu
ICLR
2023
DensePure: Understanding Diffusion Models for Adversarial Robustness
Chaowei Xiao
,
Zhongzhu Chen
,
Kun Jin
,
Jiongxiao Wang
,
Weili Nie
,
Mingyan Liu
,
Anima Anandkumar
,
Bo Li
,
Dawn Song
NeurIPS
2023
Long-Term Fairness with Unknown Dynamics
Tongxin Yin
,
Reilly Raab
,
Mingyan Liu
,
Yang Liu
ICLRW
2023
Long-Term Fairness with Unknown Dynamics
Tongxin Yin
,
Reilly Raab
,
Mingyan Liu
,
Yang Liu
ICLRW
2023
Performative Federated Learning
Kun Jin
,
Tongxin Yin
,
Zhongzhu Chen
,
Zeyu Sun
,
Xueru Zhang
,
Yang Liu
,
Mingyan Liu
NeurIPSW
2022
DensePure: Understanding Diffusion Models Towards Adversarial Robustness
Zhongzhu Chen
,
Kun Jin
,
Jiongxiao Wang
,
Weili Nie
,
Mingyan Liu
,
Anima Anandkumar
,
Bo Li
,
Dawn Song
ICML
2022
Fairness Interventions as (Dis)Incentives for Strategic Manipulation
Xueru Zhang
,
Mohammad Mahdi Khalili
,
Kun Jin
,
Parinaz Naghizadeh
,
Mingyan Liu
ICCV
2021
Can Shape Structure Features Improve Model Robustness Under Diverse Adversarial Settings?
Mingjie Sun
,
Zichao Li
,
Chaowei Xiao
,
Haonan Qiu
,
Bhavya Kailkhura
,
Mingyan Liu
,
Bo Li
AAAI
2021
Multi-Scale Games: Representing and Solving Games on Networks with Group Structure
Kun Jin
,
Yevgeniy Vorobeychik
,
Mingyan Liu
NeurIPS
2020
How Do Fair Decisions Fare in Long-Term Qualification?
Xueru Zhang
,
Ruibo Tu
,
Yang Liu
,
Mingyan Liu
,
Hedvig Kjellstrom
,
Kun Zhang
,
Cheng Zhang
NeurIPS
2020
Robust Deep Reinforcement Learning Against Adversarial Perturbations on State Observations
Huan Zhang
,
Hongge Chen
,
Chaowei Xiao
,
Bo Li
,
Mingyan Liu
,
Duane Boning
,
Cho-Jui Hsieh
NeurIPS
2019
Group Retention When Using Machine Learning in Sequential Decision Making: The Interplay Between User Dynamics and Fairness
Xueru Zhang
,
Mohammadmahdi Khaliligarekani
,
Cem Tekin
,
Mingyan Liu
ECCV
2018
Characterizing Adversarial Examples Based on Spatial Consistency Information for Semantic Segmentation
Chaowei Xiao
,
Ruizhi Deng
,
Bo Li
,
Fisher Yu
,
Mingyan Liu
,
Dawn Song
IJCAI
2018
Generating Adversarial Examples with Adversarial Networks
Chaowei Xiao
,
Bo Li
,
Jun-Yan Zhu
,
Warren He
,
Mingyan Liu
,
Dawn Song
ICML
2018
Improving the Privacy and Accuracy of ADMM-Based Distributed Algorithms
Xueru Zhang
,
Mohammad Mahdi Khalili
,
Mingyan Liu
ICLR
2018
Spatially Transformed Adversarial Examples
Chaowei Xiao
,
Jun-Yan Zhu
,
Bo Li
,
Warren He
,
Mingyan Liu
,
Dawn Song
IJCAI
2017
Crowd Learning: Improving Online Decision Making Using Crowdsourced Data
Yang Liu
,
Mingyan Liu
AAAI
2016
Finding One's Best Crowd: Online Learning by Exploiting Source Similarity
Yang Liu
,
Mingyan Liu