ML Anthology
Authors
Search
About
Liu, Zhaoqiang
19 publications
TMLR
2025
AlgoFormer: An Efficient Transformer Framework with Algorithmic Structures
Yihang Gao
,
Chuanyang Zheng
,
Enze Xie
,
Han Shi
,
Tianyang Hu
,
Yu Li
,
Michael Ng
,
Zhenguo Li
,
Zhaoqiang Liu
ICML
2025
Integrating Intermediate Layer Optimization and Projected Gradient Descent for Solving Inverse Problems with Diffusion Models
Yang Zheng
,
Wen Li
,
Zhaoqiang Liu
NeurIPS
2025
Learnable Sampler Distillation for Discrete Diffusion Models
Feiyang Fu
,
Tongxian Guo
,
Zhaoqiang Liu
ICML
2025
Learning Single Index Models with Diffusion Priors
Anqi Tang
,
Youming Chen
,
Shuchen Xue
,
Zhaoqiang Liu
CVPR
2024
Accelerating Diffusion Sampling with Optimized Time Steps
Shuchen Xue
,
Zhaoqiang Liu
,
Fei Chen
,
Shifeng Zhang
,
Tianyang Hu
,
Enze Xie
,
Zhenguo Li
AAAI
2024
Efficient Algorithms for Non-Gaussian Single Index Models with Generative Priors
Junren Chen
,
Zhaoqiang Liu
NeurIPS
2024
Generalized Eigenvalue Problems with Generative Priors
Zhaoqiang Liu
,
Wen Li
,
Junren Chen
ICML
2024
The Surprising Effectiveness of Skip-Tuning in Diffusion Sampling
Jiajun Ma
,
Shuchen Xue
,
Tianyang Hu
,
Wenjia Wang
,
Zhaoqiang Liu
,
Zhenguo Li
,
Zhi-Ming Ma
,
Kenji Kawaguchi
NeurIPS
2023
A Unified Framework for Uniform Signal Recovery in Nonlinear Generative Compressed Sensing
Junren Chen
,
Jonathan Scarlett
,
Michael Ng
,
Zhaoqiang Liu
ICCV
2023
DDP: Diffusion Model for Dense Visual Prediction
Yuanfeng Ji
,
Zhe Chen
,
Enze Xie
,
Lanqing Hong
,
Xihui Liu
,
Zhaoqiang Liu
,
Tong Lu
,
Zhenguo Li
,
Ping Luo
ICCV
2023
DiffFit: Unlocking Transferability of Large Diffusion Models via Simple Parameter-Efficient Fine-Tuning
Enze Xie
,
Lewei Yao
,
Han Shi
,
Zhili Liu
,
Daquan Zhou
,
Zhaoqiang Liu
,
Jiawei Li
,
Zhenguo Li
ICLR
2022
Generative Principal Component Analysis
Zhaoqiang Liu
,
Jiulong Liu
,
Subhroshekhar Ghosh
,
Jun Han
,
Jonathan Scarlett
NeurIPS
2022
Misspecified Phase Retrieval with Generative Priors
Zhaoqiang Liu
,
Xinshao Wang
,
Jiulong Liu
CVPR
2022
Non-Iterative Recovery from Nonlinear Observations Using Generative Models
Jiulong Liu
,
Zhaoqiang Liu
IJCAI
2022
Projected Gradient Descent Algorithms for Solving Nonlinear Inverse Problems with Generative Priors
Zhaoqiang Liu
,
Jun Han
NeurIPS
2021
Towards Sample-Optimal Compressive Phase Retrieval with Sparse and Generative Priors
Zhaoqiang Liu
,
Subhroshekhar Ghosh
,
Jonathan Scarlett
ICML
2020
Sample Complexity Bounds for 1-Bit Compressive Sensing and Binary Stable Embeddings with Generative Priors
Zhaoqiang Liu
,
Selwyn Gomes
,
Avtansh Tiwari
,
Jonathan Scarlett
NeurIPS
2020
The Generalized Lasso with Nonlinear Observations and Generative Priors
Zhaoqiang Liu
,
Jonathan Scarlett
NeurIPSW
2019
Sample Complexity Lower Bounds for Compressive Sensing with Generative Models
Zhaoqiang Liu
,
Jonathan Scarlett