Long, Philip M.

76 publications

JMLR 2024 Sharpness-Aware Minimization and the Edge of Stability Philip M. Long, Peter L. Bartlett
JMLR 2023 Deep Linear Networks Can Benignly Overfit When Shallow Ones Do Niladri S. Chatterji, Philip M. Long
JMLR 2023 The Dynamics of Sharpness-Aware Minimization: Bouncing Across Ravines and Drifting Towards Wide Minima Peter L. Bartlett, Philip M. Long, Olivier Bousquet
JMLR 2022 Foolish Crowds Support Benign Overfitting Niladri S. Chatterji, Philip M. Long
JMLR 2022 The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer Linear Networks Niladri S. Chatterji, Philip M. Long, Peter L. Bartlett
JMLR 2021 Failures of Model-Dependent Generalization Bounds for Least-Norm Interpolation Peter L. Bartlett, Philip M. Long
JMLR 2021 Finite-Sample Analysis of Interpolating Linear Classifiers in the Overparameterized Regime Niladri S. Chatterji, Philip M. Long
JMLR 2021 When Does Gradient Descent with Logistic Loss Find Interpolating Two-Layer Networks? Niladri S. Chatterji, Philip M. Long, Peter L. Bartlett
COLT 2021 When Does Gradient Descent with Logistic Loss Interpolate Using Deep Networks with Smoothed ReLU Activations? Niladri S. Chatterji, Philip M. Long, Peter Bartlett
ICLR 2020 Generalization Bounds for Deep Convolutional Neural Networks Philip M. Long, Hanie Sedghi
JMLR 2020 Learning Sums of Independent Random Variables with Sparse Collective Support Anindya De, Philip M. Long, Rocco A. Servedio
ALT 2020 On the Complexity of Proper Distribution-Free Learning of Linear Classifiers Philip M. Long, Raphael J. Long
ICLR 2020 On the Global Convergence of Training Deep Linear ResNets Difan Zou, Philip M. Long, Quanquan Gu
ICLR 2020 Size-Free Generalization Bounds for Convolutional Neural Networks Philip M. Long, Hanie Sedghi
ICLR 2019 The Singular Values of Convolutional Layers Hanie Sedghi, Vineet Gupta, Philip M. Long
ALT 2017 New Bounds on the Price of Bandit Feedback for Mistake-Bounded Online Multiclass Learning Philip M. Long
COLT 2017 Surprising Properties of Dropout in Deep Networks David P. Helmbold, Philip M. Long
JMLR 2015 On the Inductive Bias of Dropout David P. Helmbold, Philip M. Long
WACV 2014 Benchmarking Large-Scale Fine-Grained Categorization Anelia Angelova, Philip M. Long
COLT 2013 Active and Passive Learning of Linear Separators Under Log-Concave Distributions Maria-Florina Balcan, Philip M. Long
JMLR 2013 Algorithms and Hardness Results for Parallel Large Margin Learning Philip M. Long, Rocco A. Servedio
MLJ 2012 Linear Classifiers Are Nearly Optimal When Hidden Variables Have Diverse Effects Nader H. Bshouty, Philip M. Long
COLT 2012 New Bounds for Learning Intervals with Implications for Semi-Supervised Learning David P. Helmbold, Philip M. Long
JMLR 2012 On the Necessity of Irrelevant Variables David P. Helmbold, Philip M. Long
ICML 2011 On the Necessity of Irrelevant Variables David P. Helmbold, Philip M. Long
ICML 2010 Finding Planted Partitions in Nearly Linear Time Using Arrested Spectral Clustering Nader H. Bshouty, Philip M. Long
MLJ 2010 Random Classification Noise Defeats All Convex Potential Boosters Philip M. Long, Rocco A. Servedio
ICML 2010 Restricted Boltzmann Machines Are Hard to Approximately Evaluate or Simulate Philip M. Long, Rocco A. Servedio
JMLR 2009 Learning Halfspaces with Malicious Noise Adam R. Klivans, Philip M. Long, Rocco A. Servedio
COLT 2009 Linear Classifiers Are Nearly Optimal When Hidden Variables Have Diverse Effect Nader H. Bshouty, Philip M. Long
ICML 2008 Random Classification Noise Defeats All Convex Potential Boosters Philip M. Long, Rocco A. Servedio
JMLR 2007 Online Learning of Multiple Tasks with a Shared Loss Ofer Dekel, Philip M. Long, Yoram Singer
ALT 2006 Algorithmic Learning Theory, 17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006, Proceedings José L. Balcázar, Philip M. Long, Frank Stephan
NeurIPS 2006 Attribute-Efficient Learning of Decision Lists and Linear Threshold Functions Under Unconcentrated Distributions Philip M. Long, Rocco Servedio
COLT 2006 Discriminative Learning Can Succeed Where Generative Learning Fails Philip M. Long, Rocco A. Servedio
ALT 2006 Editors' Introduction José L. Balcázar, Philip M. Long, Frank Stephan
NeurIPS 2006 Learnability and the Doubling Dimension Yi Li, Philip M. Long
COLT 2006 Online Multitask Learning Ofer Dekel, Philip M. Long, Yoram Singer
AAAI 2006 Predicting Electricity Distribution Feeder Failures Using Machine Learning Susceptibility Analysis Philip Gross, Albert Boulanger, Marta Arias, David L. Waltz, Philip M. Long, Charles Lawson, Roger Anderson, Matthew Koenig, Mark Mastrocinque, William Fairechio, John A. Johnson, Serena Lee, Frank Doherty, Arthur Kressner
COLT 2005 Martingale Boosting Philip M. Long, Rocco A. Servedio
ICML 2005 Unsupervised Evidence Integration Philip M. Long, Vinay Varadan, Sarah Gilman, Mark Treshock, Rocco A. Servedio
NeurIPS 2004 Mistake Bounds for Maximum Entropy Discrimination Philip M. Long, Xinyu Wu
MLJ 2003 A Theoretical Analysis of Query Selection for Collaborative Filtering Sanjoy Dasgupta, Wee Sun Lee, Philip M. Long
MLJ 2003 Boosting and Microarray Data Philip M. Long, Vinsensius Berlian Vega Sn
COLT 2003 Boosting with Diverse Base Classifiers Sanjoy Dasgupta, Philip M. Long
AAAI 2002 Minimum Majority Classification and Boosting Philip M. Long
MLJ 2002 The Relaxed Online Maximum Margin Algorithm Yi Li, Philip M. Long
COLT 2001 A Theoretical Analysis of Query Selection for Collaborative Filtering Wee Sun Lee, Philip M. Long
COLT 2001 Agnostic Boosting Shai Ben-David, Philip M. Long, Yishay Mansour
COLT 2001 On Agnostic Learning with 0, *, 1-Valued and Real-Valued Hypotheses Philip M. Long
COLT 2000 On the Difficulty of Approximately Maximizing Agreements Shai Ben-David, Nadav Eiron, Philip M. Long
ICML 1999 Associative Reinforcement Learning Using Linear Probabilistic Concepts Naoki Abe, Philip M. Long
COLT 1999 Proceedings of the Twelfth Annual Conference on Computational Learning Theory, COLT 1999, Santa Cruz, CA, USA, July 7-9, 1999 Shai Ben-David, Philip M. Long
MLJ 1999 Structural Results About On-Line Learning Models with and Without Queries Peter Auer, Philip M. Long
MLJ 1999 The Complexity of Learning According to Two Models of a Drifting Environment Philip M. Long
NeurIPS 1999 The Relaxed Online Maximum Margin Algorithm Yi Li, Philip M. Long
COLT 1998 On the Sample Complexity of Learning Functions with Bounded Variation Philip M. Long
MLJ 1998 PAC Learning Axis-Aligned Rectangles with Respect to Product Distributions from Multiple-Instance Examples Philip M. Long, Lei Tan
COLT 1998 The Complexity of Learning According to Two Models of a Drifting Environment Philip M. Long
MLJ 1997 Guest Editor's Introduction Philip M. Long
COLT 1997 On-Line Evaluation and Prediction Using Linear Functions Philip M. Long
ALT 1996 Improved Bounds About On-Line Learning of Smooth Functions of a Single Variable Philip M. Long
COLT 1996 On the Complexity of Learning from Drifting Distributions Rakesh D. Barve, Philip M. Long
COLT 1996 PAC Learning Axis-Aligned Rectangles with Respect to Product Distributions from Multiple-Instance Examples Philip M. Long, Lei Tan
ICML 1995 Learning to Make Rent-to-Buy Decisions with Systems Applications P. Krishnan, Philip M. Long, Jeffrey Scott Vitter
COLT 1995 More Theorems About Scale-Sensitive Dimensions and Learning Peter L. Bartlett, Philip M. Long
MLJ 1995 On the Complexity of Function Learning Peter Auer, Philip M. Long, Wolfgang Maass, Gerhard J. Woeginger
COLT 1994 Fat-Shattering and the Learnability of Real-Valued Functions Peter L. Bartlett, Philip M. Long, Robert C. Williamson
MLJ 1994 Tracking Drifting Concepts by Minimizing Disagreements David P. Helmbold, Philip M. Long
COLT 1993 On the Complexity of Function Learning Peter Auer, Philip M. Long, Wolfgang Maass, Gerhard J. Woeginger
COLT 1993 On-Line Learning with Linear Loss Constraints Nick Littlestone, Philip M. Long
COLT 1993 Worst-Case Quadratic Loss Bounds for a Generalization of the Widrow-Hoff Rule Nicolò Cesa-Bianchi, Philip M. Long, Manfred K. Warmuth
COLT 1992 Characterizations of Learnability for Classes of O, ..., N-Valued Functions Shai Ben-David, Nicolò Cesa-Bianchi, Philip M. Long
COLT 1992 The Learning Complexity of Smooth Functions of a Single Variable Don Kimber, Philip M. Long
COLT 1991 Tracking Drifting Concepts Using Random Examples David P. Helmbold, Philip M. Long
COLT 1990 Composite Geometric Concepts and Polynomial Predictability Philip M. Long, Manfred K. Warmuth