ML Anthology
Authors
Search
About
Lowy, Andrew
14 publications
NeurIPS
2025
Differentially Private Bilevel Optimization: Efficient Algorithms with Near-Optimal Rates
Andrew Lowy
,
Daogao Liu
ICMLW
2024
Efficient Differentially Private Fine-Tuning of Diffusion Models
Jing Liu
,
Andrew Lowy
,
Toshiaki Koike-Akino
,
Kieran Parsons
,
Ye Wang
NeurIPS
2024
Faster Algorithms for User-Level Private Stochastic Convex Optimization
Andrew Lowy
,
Daogao Liu
,
Hilal Asi
ICML
2024
How to Make the Gradients Small Privately: Improved Rates for Differentially Private Non-Convex Optimization
Andrew Lowy
,
Jonathan Ullman
,
Stephen Wright
ICML
2024
Optimal Differentially Private Model Training with Public Data
Andrew Lowy
,
Zeman Li
,
Tianjian Huang
,
Meisam Razaviyayn
ICML
2024
Private Heterogeneous Federated Learning Without a Trusted Server Revisited: Error-Optimal and Communication-Efficient Algorithms for Convex Losses
Changyu Gao
,
Andrew Lowy
,
Xingyu Zhou
,
Stephen Wright
NeurIPSW
2023
Exploring User-Level Gradient Inversion with a Diffusion Prior
Zhuohang Li
,
Andrew Lowy
,
Jing Liu
,
Toshiaki Koike-Akino
,
Bradley A. Malin
,
Kieran Parsons
,
Ye Wang
ICLR
2023
Private Federated Learning Without a Trusted Server: Optimal Algorithms for Convex Losses
Andrew Lowy
,
Meisam Razaviyayn
AISTATS
2023
Private Non-Convex Federated Learning Without a Trusted Server
Andrew Lowy
,
Ali Ghafelebashi
,
Meisam Razaviyayn
ALT
2023
Private Stochastic Optimization with Large Worst-Case Lipschitz Parameter: Optimal Rates for (Non-Smooth) Convex Losses and Extension to Non-Convex Losses
Andrew Lowy
,
Meisam Razaviyayn
ICLR
2023
Stochastic Differentially Private and Fair Learning
Andrew Lowy
,
Devansh Gupta
,
Meisam Razaviyayn
TMLR
2022
A Stochastic Optimization Framework for Fair Risk Minimization
Andrew Lowy
,
Sina Baharlouei
,
Rakesh Pavan
,
Meisam Razaviyayn
,
Ahmad Beirami
NeurIPSW
2022
A Stochastic Optimization Framework for Fair Risk Minimization
Andrew Lowy
,
Sina Baharlouei
,
Rakesh Pavan
,
Meisam Razaviyayn
,
Ahmad Beirami
NeurIPSW
2022
Private Stochastic Optimization with Large Worst-Case Lipschitz Parameter: Optimal Rates for (Non-Smooth) Convex Losses & Extension to Non-Convex
Andrew Lowy
,
Meisam Razaviyayn