ML Anthology
Authors
Search
About
Lu, Cong
31 publications
ICLRW
2025
Automated Capability Discovery via Model Self-Exploration
Cong Lu
,
Shengran Hu
,
Jeff Clune
ICLR
2025
Automated Design of Agentic Systems
Shengran Hu
,
Cong Lu
,
Jeff Clune
ICLR
2025
Intelligent Go-Explore: Standing on the Shoulders of Giant Foundation Models
Cong Lu
,
Shengran Hu
,
Jeff Clune
ICLRW
2025
StochasTok: Improving Fine-Grained Subword Understanding in LLMs
Anya Sims
,
Cong Lu
,
Klara Kaleb
,
Jakob Nicolaus Foerster
,
Yee Whye Teh
NeurIPSW
2024
Automated Design of Agentic Systems
Shengran Hu
,
Cong Lu
,
Jeff Clune
NeurIPSW
2024
Automated Design of Agentic Systems
Shengran Hu
,
Cong Lu
,
Jeff Clune
NeurIPSW
2024
Automated Design of Agentic Systems
Shengran Hu
,
Cong Lu
,
Jeff Clune
NeurIPSW
2024
Automated Design of Agentic Systems
Shengran Hu
,
Cong Lu
,
Jeff Clune
NeurIPSW
2024
Beyond Benchmarking: Automated Capability Discovery via Model Self-Exploration
Cong Lu
,
Shengran Hu
,
Jeff Clune
ICMLW
2024
Intelligent Go-Explore: Standing on the Shoulders of Giant Foundation Models
Cong Lu
,
Shengran Hu
,
Jeff Clune
NeurIPS
2024
Pre-Trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control
Gunshi Gupta
,
Karmesh Yadav
,
Yarin Gal
,
Zsolt Kira
,
Dhruv Batra
,
Cong Lu
,
Tim G. J. Rudner
ICLRW
2024
Pre-Trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control
Gunshi Gupta
,
Karmesh Yadav
,
Yarin Gal
,
Dhruv Batra
,
Zsolt Kira
,
Cong Lu
,
Tim G. J. Rudner
NeurIPSW
2024
Quality-Diversity Self-Play: Open-Ended Strategy Innovation via Foundation Models
Aaron Dharna
,
Cong Lu
,
Jeff Clune
NeurIPSW
2024
Quality-Diversity Self-Play: Open-Ended Strategy Innovation via Foundation Models
Aaron Dharna
,
Cong Lu
,
Jeff Clune
NeurIPS
2024
The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning
Anya Sims
,
Cong Lu
,
Jakob N. Foerster
,
Yee Whye Teh
TMLR
2024
Video Diffusion Models: A Survey
Andrew Melnik
,
Michal Ljubljanac
,
Cong Lu
,
Qi Yan
,
Weiming Ren
,
Helge Ritter
TMLR
2023
Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations
Cong Lu
,
Philip J. Ball
,
Tim G. J. Rudner
,
Jack Parker-Holder
,
Michael A Osborne
,
Yee Whye Teh
NeurIPS
2023
Synthetic Experience Replay
Cong Lu
,
Philip Ball
,
Yee Whye Teh
,
Jack Parker-Holder
ICLRW
2023
Synthetic Experience Replay
Cong Lu
,
Philip J. Ball
,
Jack Parker-Holder
ICMLW
2023
Synthetic Experience Replay
Cong Lu
,
Philip J. Ball
,
Yee Whye Teh
,
Jack Parker-Holder
NeurIPSW
2023
The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning
Anya Sims
,
Cong Lu
,
Yee Whye Teh
AutoML
2022
Bayesian Generational Population-Based Training
Xingchen Wan
,
Cong Lu
,
Jack Parker-Holder
,
Philip J. Ball
,
Vu Nguyen
,
Binxin Ru
,
Michael Osborne
ICLRW
2022
Bayesian Generational Population-Based Training
Xingchen Wan
,
Cong Lu
,
Jack Parker-Holder
,
Philip J. Ball
,
Vu Nguyen
,
Binxin Ru
,
Michael Osborne
ICMLW
2022
Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations
Cong Lu
,
Philip J. Ball
,
Tim G. J. Rudner
,
Jack Parker-Holder
,
Michael A Osborne
,
Yee Whye Teh
ICLR
2022
Revisiting Design Choices in Offline Model Based Reinforcement Learning
Cong Lu
,
Philip Ball
,
Jack Parker-Holder
,
Michael Osborne
,
Stephen J. Roberts
ICML
2021
Augmented World Models Facilitate Zero-Shot Dynamics Generalization from a Single Offline Environment
Philip J Ball
,
Cong Lu
,
Jack Parker-Holder
,
Stephen Roberts
ICLRW
2021
Augmented World Models Facilitate Zero-Shot Dynamics Generalization from a Single Offline Environment
Philip Ball
,
Cong Lu
,
Jack Parker-Holder
,
S Roberts
ICML
2021
Exploration in Approximate Hyper-State Space for Meta Reinforcement Learning
Luisa M Zintgraf
,
Leo Feng
,
Cong Lu
,
Maximilian Igl
,
Kristian Hartikainen
,
Katja Hofmann
,
Shimon Whiteson
NeurIPS
2021
On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations
Tim G. J. Rudner
,
Cong Lu
,
Michael A Osborne
,
Yarin Gal
,
Yee W. Teh
ICML
2021
Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces
Xingchen Wan
,
Vu Nguyen
,
Huong Ha
,
Binxin Ru
,
Cong Lu
,
Michael A. Osborne
JMLR
2021
VariBAD: Variational Bayes-Adaptive Deep RL via Meta-Learning
Luisa Zintgraf
,
Sebastian Schulze
,
Cong Lu
,
Leo Feng
,
Maximilian Igl
,
Kyriacos Shiarlis
,
Yarin Gal
,
Katja Hofmann
,
Shimon Whiteson