ML Anthology
Authors
Search
About
Lu, Fred
10 publications
ECML-PKDD
2025
Optimizing the Optimal Weighted Average: Efficient Distributed Sparse Classification
Fred Lu
,
Ryan R. Curtin
,
Edward Raff
,
Francis Ferraro
,
James Holt
NeurIPS
2024
Stabilizing Linear Passive-Aggressive Online Learning with Weighted Reservoir Sampling
Skyler Wu
,
Fred Lu
,
Edward Raff
,
James Holt
AAAI
2023
A Coreset Learning Reality Check
Fred Lu
,
Edward Raff
,
James Holt
ICLR
2023
Neural Bregman Divergences for Distance Learning
Fred Lu
,
Edward Raff
,
Francis Ferraro
NeurIPS
2023
Scaling up Differentially Private LASSO Regularized Logistic Regression via Faster Frank-Wolfe Iterations
Edward Raff
,
Amol Khanna
,
Fred Lu
ICMLW
2023
The Challenge of Differentially Private Screening Rules
Amol Khanna
,
Fred Lu
,
Edward Raff
NeurIPS
2022
A General Framework for Auditing Differentially Private Machine Learning
Fred Lu
,
Joseph Munoz
,
Maya Fuchs
,
Tyler LeBlond
,
Elliott Zaresky-Williams
,
Edward Raff
,
Francis Ferraro
,
Brian Testa
NeurIPSW
2022
Exploring the Sharpened Cosine Similarity
Skyler Wu
,
Fred Lu
,
Edward Raff
,
James Holt
AAAI
2022
Out of Distribution Data Detection Using Dropout Bayesian Neural Networks
André T. Nguyen
,
Fred Lu
,
Gary Lopez Munoz
,
Edward Raff
,
Charles Nicholas
,
James Holt
ICLR
2021
Evaluating the Disentanglement of Deep Generative Models Through Manifold Topology
Sharon Zhou
,
Eric Zelikman
,
Fred Lu
,
Andrew Y. Ng
,
Gunnar E. Carlsson
,
Stefano Ermon