ML Anthology
Authors
Search
About
Luo, Shengjie
15 publications
ICLR
2025
Let the Code LLM Edit Itself When You Edit the Code
Zhenyu He
,
Jun Zhang
,
Shengjie Luo
,
Jingjing Xu
,
Zhi Zhang
,
Di He
NeurIPS
2025
UniSite: The First Cross-Structure Dataset and Learning Framework for End-to-End Ligand Binding Site Detection
Jigang Fan
,
QuanLin Wu
,
Shengjie Luo
,
Liwei Wang
NeurIPS
2024
Bridging Geometric States via Geometric Diffusion Bridge
Shengjie Luo
,
Yixian Xu
,
Di He
,
Shuxin Zheng
,
Tie-Yan Liu
,
Liwei Wang
ICLR
2024
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Shengjie Luo
,
Tianlang Chen
,
Aditi S. Krishnapriyan
ICML
2024
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
,
Shengjie Luo
,
Di He
,
Shuxin Zheng
,
Tie-Yan Liu
,
Liwei Wang
AISTATS
2024
Learning a Fourier Transform for Linear Relative Positional Encodings in Transformers
Krzysztof Choromanski
,
Shanda Li
,
Valerii Likhosherstov
,
Kumar Avinava Dubey
,
Shengjie Luo
,
Di He
,
Yiming Yang
,
Tamas Sarlos
,
Thomas Weingarten
,
Adrian Weller
NeurIPS
2024
Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning
Yuxuan Ren
,
Dihan Zheng
,
Chang Liu
,
Peiran Jin
,
Yu Shi
,
Lin Huang
,
Jiyan He
,
Shengjie Luo
,
Tao Qin
,
Tie-Yan Liu
ICML
2024
Two Stones Hit One Bird: Bilevel Positional Encoding for Better Length Extrapolation
Zhenyu He
,
Guhao Feng
,
Shengjie Luo
,
Kai Yang
,
Liwei Wang
,
Jingjing Xu
,
Zhi Zhang
,
Hongxia Yang
,
Di He
NeurIPSW
2023
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
,
Shengjie Luo
,
Di He
,
Shuxin Zheng
,
Tie-Yan Liu
,
Liwei Wang
ICLR
2023
One Transformer Can Understand Both 2D & 3D Molecular Data
Shengjie Luo
,
Tianlang Chen
,
Yixian Xu
,
Shuxin Zheng
,
Tie-Yan Liu
,
Liwei Wang
,
Di He
ICLR
2023
Rethinking the Expressive Power of GNNs via Graph Biconnectivity
Bohang Zhang
,
Shengjie Luo
,
Liwei Wang
,
Di He
NeurIPS
2022
Your Transformer May Not Be as Powerful as You Expect
Shengjie Luo
,
Shanda Li
,
Shuxin Zheng
,
Tie-Yan Liu
,
Liwei Wang
,
Di He
NeurIPS
2021
Do Transformers Really Perform Badly for Graph Representation?
Chengxuan Ying
,
Tianle Cai
,
Shengjie Luo
,
Shuxin Zheng
,
Guolin Ke
,
Di He
,
Yanming Shen
,
Tie-Yan Liu
ICML
2021
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training
Tianle Cai
,
Shengjie Luo
,
Keyulu Xu
,
Di He
,
Tie-Yan Liu
,
Liwei Wang
NeurIPS
2021
Stable, Fast and Accurate: Kernelized Attention with Relative Positional Encoding
Shengjie Luo
,
Shanda Li
,
Tianle Cai
,
Di He
,
Dinglan Peng
,
Shuxin Zheng
,
Guolin Ke
,
Liwei Wang
,
Tie-Yan Liu