MacKay, David J. C.

16 publications

ICML 2009 Tractable Nonparametric Bayesian Inference in Poisson Processes with Gaussian Process Intensities Ryan Prescott Adams, Iain Murray, David J. C. MacKay
UAI 2006 MCMC for Doubly-Intractable Distributions Iain Murray, Zoubin Ghahramani, David J. C. MacKay
NeCo 1999 Comparison of Approximate Methods for Handling Hyperparameters David J. C. MacKay
NeurIPS 1999 The Nonnegative Boltzmann Machine Oliver B. Downs, David J. C. MacKay, Daniel D. Lee
MLJ 1998 Choice of Basis for Laplace Approximation David J. C. MacKay
NeurIPS 1997 A Revolution: Belief Propagation in Graphs with Cycles Brendan J. Frey, David J. C. MacKay
NeCo 1996 Equivalence of Linear Boltzmann Chains and Hidden Markov Models David J. C. MacKay
NeCo 1994 The Role of Constraints in Hebbian Learning Kenneth D. Miller, David J. C. MacKay
NeCo 1992 A Practical Bayesian Framework for Backpropagation Networks David J. C. MacKay
NeCo 1992 Bayesian Interpolation David J. C. MacKay
NeCo 1992 Information-Based Objective Functions for Active Data Selection David J. C. MacKay
NeCo 1992 The Evidence Framework Applied to Classification Networks David J. C. MacKay
NeurIPS 1991 Bayesian Model Comparison and Backprop Nets David J. C. MacKay
NeurIPS 1991 Unsupervised Classifiers, Mutual Information and 'Phantom Targets John S. Bridle, Anthony J. R. Heading, David J. C. MacKay
NeCo 1990 Analysis of Linsker's Simulations of Hebbian Rules David J. C. MacKay, Kenneth D. Miller
NeurIPS 1989 Analysis of Linsker's Simulations of Hebbian Rules David J. C. MacKay, Kenneth D. Miller