Magliacane, Sara

29 publications

CLeaR 2025 Combining Causal Models for More Accurate Abstractions of Neural Networks Theodora-Mara Pîslar, Sara Magliacane, Atticus Geiger
NeurIPS 2025 Learning Interactive World Model for Object-Centric Reinforcement Learning Fan Feng, Phillip Lippe, Sara Magliacane
ICLRW 2025 Learning to Defer for Causal Discovery with Imperfect Experts Oscar Clivio, Divyat Mahajan, Perouz Taslakian, Sara Magliacane, Ioannis Mitliagkas, Valentina Zantedeschi, Alexandre Drouin
AISTATS 2025 SNAP: Sequential Non-Ancestor Pruning for Targeted Causal Effect Estimation with an Unknown Graph Mátyás Schubert, Tom Claassen, Sara Magliacane
NeurIPS 2025 Sample-Efficient Learning of Concepts with Theoretical Guarantees: From Data to Concepts Without Interventions Hidde Fokkema, Tim van Erven, Sara Magliacane
ICML 2024 A Sparsity Principle for Partially Observable Causal Representation Learning Danru Xu, Dingling Yao, Sebastien Lachapelle, Perouz Taslakian, Julius Von Kügelgen, Francesco Locatello, Sara Magliacane
ICML 2024 Amortized Equation Discovery in Hybrid Dynamical Systems Yongtuo Liu, Sara Magliacane, Miltiadis Kofinas, Stratis Gavves
UAI 2024 Learning Causal Abstractions of Linear Structural Causal Models Riccardo Massidda, Sara Magliacane, Davide Bacciu
ICLR 2024 Multi-View Causal Representation Learning with Partial Observability Dingling Yao, Danru Xu, Sebastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius, Julius von Kügelgen, Francesco Locatello
CLeaR 2024 Towards the Reusability and Compositionality of Causal Representations Davide Talon, Phillip Lippe, Stuart James, Alessio Del Bue, Sara Magliacane
NeurIPSW 2023 A Sparsity Principle for Partially Observable Causal Representation Learning Danru Xu, Dingling Yao, Sebastien Lachapelle, Perouz Taslakian, Julius von Kügelgen, Francesco Locatello, Sara Magliacane
UAI 2023 BISCUIT: Causal Representation Learning from Binary Interactions Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, Efstratios Gavves
ICLR 2023 Causal Representation Learning for Instantaneous and Temporal Effects in Interactive Systems Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, Efstratios Gavves
ICML 2023 Graph Switching Dynamical Systems Yongtuo Liu, Sara Magliacane, Miltiadis Kofinas, Efstratios Gavves
NeurIPSW 2023 Hierarchical Causal Representation Learning Angelos Nalmpantis, Phillip Lippe, Sara Magliacane
NeurIPS 2023 Learning Dynamic Attribute-Factored World Models for Efficient Multi-Object Reinforcement Learning Fan Feng, Sara Magliacane
NeurIPS 2023 Modulated Neural ODEs Ilze Amanda Auzina, Çağatay Yıldız, Sara Magliacane, Matthias Bethge, Efstratios Gavves
NeurIPSW 2023 Multi-View Causal Representation Learning with Partial Observability Dingling Yao, Danru Xu, Sebastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius, Julius von Kügelgen, Francesco Locatello
NeurIPSW 2023 Towards the Reusability and Compositionality of Causal Representations Davide Talon, Phillip Lippe, Stuart James, Alessio Del Bue, Sara Magliacane
ICLR 2022 AdaRL: What, Where, and How to Adapt in Transfer Reinforcement Learning Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, Kun Zhang
ICML 2022 CITRIS: Causal Identifiability from Temporal Intervened Sequences Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, Stratis Gavves
ICLRW 2022 CITRIS: Causal Identifiability from Temporal Intervened Sequences Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano, Taco Cohen, Efstratios Gavves
NeurIPS 2022 Factored Adaptation for Non-Stationary Reinforcement Learning Fan Feng, Biwei Huang, Kun Zhang, Sara Magliacane
NeurIPS 2020 Active Structure Learning of Causal DAGs via Directed Clique Trees Chandler Squires, Sara Magliacane, Kristjan Greenewald, Dmitriy Katz, Murat Kocaoglu, Karthikeyan Shanmugam
JMLR 2020 Joint Causal Inference from Multiple Contexts Joris M. Mooij, Sara Magliacane, Tom Claassen
NeurIPS 2019 Sample Efficient Active Learning of Causal Trees Kristjan Greenewald, Dmitriy Katz, Karthikeyan Shanmugam, Sara Magliacane, Murat Kocaoglu, Enric Boix Adsera, Guy Bresler
UAI 2018 Causal Discovery in the Presence of Measurement Error Tineke Blom, Anna Klimovskaia, Sara Magliacane, Joris M. Mooij
NeurIPS 2018 Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions Sara Magliacane, Thijs van Ommen, Tom Claassen, Stephan Bongers, Philip Versteeg, Joris M. Mooij
NeurIPS 2016 Ancestral Causal Inference Sara Magliacane, Tom Claassen, Joris M. Mooij