Makar, Maggie

24 publications

TMLR 2026 Teaching Invariance Using Privileged Mediation Information Dylan Zapzalka, Maggie Makar
NeurIPS 2025 Disentangling Misreporting from Genuine Adaptation in Strategic Settings: A Causal Approach Dylan Zapzalka, Trenton Chang, Lindsay Warrenburg, Sae-Hwan Park, Daniel K Shenfeld, Ravi B Parikh, Jenna Wiens, Maggie Makar
NeurIPS 2024 Hypothesis Testing the Circuit Hypothesis in LLMs Claudia Shi, Nicolas Beltran-Velez, Achille Nazaret, Carolina Zheng, Adrià Garriga-Alonso, Andrew Jesson, Maggie Makar, David M. Blei
ICMLW 2024 Hypothesis Testing the Circuit Hypothesis in LLMs Claudia Shi, Nicolas Beltran-Velez, Achille Nazaret, Carolina Zheng, Adrià Garriga-Alonso, Andrew Jesson, Maggie Makar, David Blei
AISTATS 2024 Learning to Rank for Optimal Treatment Allocation Under Resource Constraints Fahad Kamran, Maggie Makar, Jenna Wiens
AISTATS 2024 Offline Policy Evaluation and Optimization Under Confounding Chinmaya Kausik, Yangyi Lu, Kevin Tan, Maggie Makar, Yixin Wang, Ambuj Tewari
UAI 2024 Partial Identification of the Maximum Mean Discrepancy with Mismeasured Data Ron Nafshi, Maggie Makar
NeurIPSW 2024 Teaching Invariance Using Privileged Mediation Information Dylan Zapzalka, Maggie Makar
NeurIPS 2024 Who’s Gaming the System? a Causally-Motivated Approach for Detecting Strategic Adaptation Trenton Chang, Lindsay Warrenburg, Sae-Hwan Park, Ravi B. Parikh, Maggie Makar, Jenna Wiens
TMLR 2023 Fairness and Robustness in Anti-Causal Prediction Maggie Makar, Alexander D'Amour
ICMLW 2023 Towards Modular Machine Learning Pipelines Aditya Modi, Jivat Neet Kaur, Maggie Makar, Pavan Mallapragada, Amit Sharma, Emre Kiciman, Adith Swaminathan
MLHC 2023 Uncovering the Varied Impact of Behavioral Change Messages on Population Groups Jiaai Xu, Rada Mihalcea, Elena Frank, Srijan Sen, Maggie Makar
AISTATS 2022 Causally Motivated Shortcut Removal Using Auxiliary Labels Maggie Makar, Ben Packer, Dan Moldovan, Davis Blalock, Yoni Halpern, Alexander D’Amour
NeurIPS 2022 Causally Motivated Multi-Shortcut Identification and Removal Jiayun Zheng, Maggie Makar
ICMLW 2022 Causally Motivated Multi-Shortcut Identification and Removal Jiayun Zheng, Maggie Makar
NeurIPSW 2022 Conditional Differential Measurement Error: Partial Identifiability and Estimation Pengrun Huang, Maggie Makar
ICMLW 2022 Fairness and Robustness in Anti-Causal Prediction Maggie Makar, Alexander D'Amour
NeurIPS 2022 Learning Concept Credible Models for Mitigating Shortcuts Jiaxuan Wang, Sarah Jabbour, Maggie Makar, Michael Sjoding, Jenna Wiens
NeurIPS 2022 Leveraging Factored Action Spaces for Efficient Offline Reinforcement Learning in Healthcare Shengpu Tang, Maggie Makar, Michael Sjoding, Finale Doshi-Velez, Jenna Wiens
ICMLW 2022 Leveraging Factored Action Spaces for Efficient Offline Reinforcement Learning in Healthcare Shengpu Tang, Maggie Makar, Michael Sjoding, Finale Doshi-Velez, Jenna Wiens
ICML 2021 Exploiting Structured Data for Learning Contagious Diseases Under Incomplete Testing Maggie Makar, Lauren West, David Hooper, Eric Horvitz, Erica Shenoy, John Guttag
ICML 2020 Estimation of Bounds on Potential Outcomes for Decision Making Maggie Makar, Fredrik Johansson, John Guttag, David Sontag
AAAI 2019 A Distillation Approach to Data Efficient Individual Treatment Effect Estimation Maggie Makar, Adith Swaminathan, Emre Kiciman
AAAI 2018 Learning the Probability of Activation in the Presence of Latent Spreaders Maggie Makar, John V. Guttag, Jenna Wiens