Malitsky, Yura

9 publications

NeurIPS 2024 Adaptive Proximal Gradient Method for Convex Optimization Yura Malitsky, Konstantin Mishchenko
JMLR 2023 Beyond the Golden Ratio for Variational Inequality Algorithms Ahmet Alacaoglu, Axel Böhm, Yura Malitsky
COLT 2022 Stochastic Variance Reduction for Variational Inequality Methods Ahmet Alacaoglu, Yura Malitsky
NeurIPS 2021 A First-Order Primal-Dual Method with Adaptivity to Local Smoothness Maria-Luiza Vladarean, Yura Malitsky, Volkan Cevher
NeurIPS 2021 Convergence of Adaptive Algorithms for Constrained Weakly Convex Optimization Ahmet Alacaoglu, Yura Malitsky, Volkan Cevher
ICML 2020 A New Regret Analysis for Adam-Type Algorithms Ahmet Alacaoglu, Yura Malitsky, Panayotis Mertikopoulos, Volkan Cevher
ICML 2020 Adaptive Gradient Descent Without Descent Yura Malitsky, Konstantin Mishchenko
AISTATS 2020 Revisiting Stochastic Extragradient Konstantin Mishchenko, Dmitry Kovalev, Egor Shulgin, Peter Richtarik, Yura Malitsky
ICML 2019 Model Function Based Conditional Gradient Method with Armijo-like Line Search Peter Ochs, Yura Malitsky