Malkin, Nikolay

43 publications

TMLR 2026 From Discrete-Time Policies to Continuous-Time Diffusion Samplers: Asymptotic Equivalences and Faster Training Julius Berner, Lorenz Richter, Marcin Sendera, Jarrid Rector-Brooks, Nikolay Malkin
ICLR 2025 Action Abstractions for Amortized Sampling Oussama Boussif, Lena Nehale Ezzine, Joseph D Viviano, Michał Koziarski, Moksh Jain, Nikolay Malkin, Emmanuel Bengio, Rim Assouel, Yoshua Bengio
ICLR 2025 Adaptive Teachers for Amortized Samplers Minsu Kim, Sanghyeok Choi, Taeyoung Yun, Emmanuel Bengio, Leo Feng, Jarrid Rector-Brooks, Sungsoo Ahn, Jinkyoo Park, Nikolay Malkin, Yoshua Bengio
UAI 2025 Can a Bayesian Oracle Prevent Harm from an Agent? Yoshua Bengio, Michael K. Cohen, Nikolay Malkin, Matt MacDermott, Damiano Fornasiere, Pietro Greiner, Younesse Kaddar
CoRL 2025 Fast Flow-Based Visuomotor Policies via Conditional Optimal Transport Couplings Andreas Sochopoulos, Nikolay Malkin, Nikolaos Tsagkas, Joao Moura, Michael Gienger, Sethu Vijayakumar
ICLRW 2025 Learning Decision Trees as Amortized Structure Inference Mohammed Mahfoud, Ghait Boukachab, Michał Koziarski, Alex Hernández-García, Stefan Bauer, Yoshua Bengio, Nikolay Malkin
ICLR 2025 Learning Diverse Attacks on Large Language Models for Robust Red-Teaming and Safety Tuning Seanie Lee, Minsu Kim, Lynn Cherif, David Dobre, Juho Lee, Sung Ju Hwang, Kenji Kawaguchi, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Moksh Jain
ICML 2025 Outsourced Diffusion Sampling: Efficient Posterior Inference in Latent Spaces of Generative Models Siddarth Venkatraman, Mohsin Hasan, Minsu Kim, Luca Scimeca, Marcin Sendera, Yoshua Bengio, Glen Berseth, Nikolay Malkin
ICLRW 2025 Outsourced Diffusion Sampling: Efficient Posterior Inference in Latent Spaces of Generative Models Siddarth Venkatraman, Mohsin Hasan, Minsu Kim, Luca Scimeca, Marcin Sendera, Yoshua Bengio, Glen Berseth, Nikolay Malkin
ICLR 2025 PQMass: Probabilistic Assessment of the Quality of Generative Models Using Probability Mass Estimation Pablo Lemos, Sammy Nasser Sharief, Nikolay Malkin, Salma Salhi, Connor Stone, Laurence Perreault-Levasseur, Yashar Hezaveh
ICLRW 2025 Solving Bayesian Inverse Problems with Diffusion Priors and Off-Policy RL Luca Scimeca, Siddarth Venkatraman, Moksh Jain, Minsu Kim, Marcin Sendera, Mohsin Hasan, Alexandre Adam, Yashar Hezaveh, Laurence Perreault-Levasseur, Yoshua Bengio, Glen Berseth, Nikolay Malkin
NeurIPS 2024 Amortizing Intractable Inference in Diffusion Models for Vision, Language, and Control Siddarth Venkatraman, Moksh Jain, Luca Scimeca, Minsu Kim, Marcin Sendera, Mohsin Hasan, Luke Rowe, Sarthak Mittal, Pablo Lemos, Emmanuel Bengio, Alexandre Adam, Jarrid Rector-Brooks, Yoshua Bengio, Glen Berseth, Nikolay Malkin
ICLR 2024 Amortizing Intractable Inference in Large Language Models Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio, Nikolay Malkin
ICLR 2024 Delta-AI: Local Objectives for Amortized Inference in Sparse Graphical Models Jean-Pierre René Falet, Hae Beom Lee, Nikolay Malkin, Chen Sun, Dragos Secrieru, Dinghuai Zhang, Guillaume Lajoie, Yoshua Bengio
UAI 2024 Discrete Probabilistic Inference as Control in Multi-Path Environments Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, Yoshua Bengio
ICLR 2024 Expected Flow Networks in Stochastic Environments and Two-Player Zero-Sum Games Marco Jiralerspong, Bilun Sun, Danilo Vucetic, Tianyu Zhang, Yoshua Bengio, Gauthier Gidel, Nikolay Malkin
NeurIPS 2024 Improved Off-Policy Training of Diffusion Samplers Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks, Alexandre Adam, Yoshua Bengio, Nikolay Malkin
ICML 2024 Improving Gradient-Guided Nested Sampling for Posterior Inference Pablo Lemos, Nikolay Malkin, Will Handley, Yoshua Bengio, Yashar Hezaveh, Laurence Perreault-Levasseur
TMLR 2024 Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Guy Wolf, Yoshua Bengio
ICML 2024 Iterated Denoising Energy Matching for Sampling from Boltzmann Densities Tara Akhound-Sadegh, Jarrid Rector-Brooks, Joey Bose, Sarthak Mittal, Pablo Lemos, Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Alexander Tong
NeurIPSW 2024 Learning Diverse Attacks on Large Language Models for Robust Red-Teaming and Safety Tuning Seanie Lee, Minsu Kim, Lynn Cherif, David Dobre, Juho Lee, Sung Ju Hwang, Kenji Kawaguchi, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Moksh Jain
ICLR 2024 PhyloGFN: Phylogenetic Inference with Generative Flow Networks Ming Yang Zhou, Zichao Yan, Elliot Layne, Nikolay Malkin, Dinghuai Zhang, Moksh Jain, Mathieu Blanchette, Yoshua Bengio
NeurIPSW 2024 Proof Flow: Preliminary Study on Generative Flow Network Language Model Tuning for Formal Reasoning Matthew Ho, Vincent Zhu, Xiaoyin Chen, Moksh Jain, Nikolay Malkin, Edwin Zhang
AISTATS 2024 Simulation-Free Schrödinger Bridges via Score and Flow Matching Alexander Y. Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet, Guy Wolf, Yoshua Bengio
ICML 2023 A Theory of Continuous Generative Flow Networks Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-Garcı́a, Lena Nehale Ezzine, Yoshua Bengio, Nikolay Malkin
ICMLW 2023 BatchGFN: Generative Flow Networks for Batch Active Learning Shreshth A Malik, Salem Lahlou, Andrew Jesson, Moksh Jain, Nikolay Malkin, Tristan Deleu, Yoshua Bengio, Yarin Gal
ICML 2023 Better Training of GFlowNets with Local Credit and Incomplete Trajectories Ling Pan, Nikolay Malkin, Dinghuai Zhang, Yoshua Bengio
NeurIPSW 2023 Discrete, Compositional, and Symbolic Representations Through Attractor Dynamics Andrew Joohun Nam, Eric Elmoznino, Nikolay Malkin, Chen Sun, Yoshua Bengio, Guillaume Lajoie
ICML 2023 GFlowNet-EM for Learning Compositional Latent Variable Models Edward J Hu, Nikolay Malkin, Moksh Jain, Katie E Everett, Alexandros Graikos, Yoshua Bengio
ICLR 2023 GFlowNets and Variational Inference Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J Hu, Katie E Everett, Dinghuai Zhang, Yoshua Bengio
ICML 2023 GFlowOut: Dropout with Generative Flow Networks Dianbo Liu, Moksh Jain, Bonaventure F. P. Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal, Nikolay Malkin, Chris Chinenye Emezue, Dinghuai Zhang, Nadhir Hassen, Xu Ji, Kenji Kawaguchi, Yoshua Bengio
ICMLW 2023 Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian Fatras, Guy Wolf, Yoshua Bengio
NeurIPS 2023 Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Subramanian, Nikolay Malkin, Laurent Charlin, Yoshua Bengio
ICMLW 2023 Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Subramanian, Nikolay Malkin, Laurent Charlin, Yoshua Bengio
ICML 2023 Learning GFlowNets from Partial Episodes for Improved Convergence and Stability Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei Cristian Nica, Tom Bosc, Yoshua Bengio, Nikolay Malkin
NeurIPS 2023 Let the Flows Tell: Solving Graph Combinatorial Problems with GFlowNets Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C. Courville, Yoshua Bengio, Ling Pan
ICMLW 2023 Simulation-Free Schrödinger Bridges via Score and Flow Matching Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet, Guy Wolf, Yoshua Bengio
ICMLW 2023 Thompson Sampling for Improved Exploration in GFlowNets Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath Chandar, Nikolay Malkin, Yoshua Bengio
NeurIPS 2022 Diffusion Models as Plug-and-Play Priors Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, Dimitris Samaras
ICML 2022 Generative Flow Networks for Discrete Probabilistic Modeling Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, Yoshua Bengio
UAI 2022 Resolving Label Uncertainty with Implicit Posterior Models Esther Rolf, Nikolay Malkin, Alexandros Graikos, Ana Jojic, Caleb Robinson, Nebojsa Jojic
NeurIPS 2022 Trajectory Balance: Improved Credit Assignment in GFlowNets Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, Yoshua Bengio
ECCV 2020 Mining Self-Similarity: Label Super-Resolution with Epitomic Representations Nikolay Malkin, Anthony Ortiz, Nebojsa Jojic