ML Anthology
Authors
Search
About
Mansinghka, Vikash K.
16 publications
ICCV
2023
3D Neural Embedding Likelihood: Probabilistic Inverse Graphics for Robust 6d Pose Estimation
Guangyao Zhou
,
Nishad Gothoskar
,
Lirui Wang
,
Joshua B. Tenenbaum
,
Dan Gutfreund
,
Miguel Lázaro-Gredilla
,
Dileep George
,
Vikash K. Mansinghka
AISTATS
2023
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
Matthew D. Hoffman
,
Tuan Anh Le
,
Pavel Sountsov
,
Christopher Suter
,
Ben Lee
,
Vikash K. Mansinghka
,
Rif A. Saurous
AISTATS
2023
SMCP3: Sequential Monte Carlo with Probabilistic Program Proposals
Alexander K. Lew
,
George Matheos
,
Tan Zhi-Xuan
,
Matin Ghavamizadeh
,
Nishad Gothoskar
,
Stuart Russell
,
Vikash K. Mansinghka
UAI
2022
Recursive Monte Carlo and Variational Inference with Auxiliary Variables
Alexander K. Lew
,
Marco Cusumano-Towner
,
Vikash K. Mansinghka
NeurIPS
2021
3DP3: 3D Scene Perception via Probabilistic Programming
Nishad Gothoskar
,
Marco Cusumano-Towner
,
Ben Zinberg
,
Matin Ghavamizadeh
,
Falk Pollok
,
Austin Garrett
,
Josh Tenenbaum
,
Dan Gutfreund
,
Vikash K. Mansinghka
UAI
2021
Hierarchical Infinite Relational Model
Feras A. Saad
,
Vikash K. Mansinghka
NeurIPS
2020
Online Bayesian Goal Inference for Boundedly Rational Planning Agents
Tan Zhi-Xuan
,
Jordyn Mann
,
Tom Silver
,
Josh Tenenbaum
,
Vikash K. Mansinghka
AISTATS
2019
A Family of Exact Goodness-of-Fit Tests for High-Dimensional Discrete Distributions
Feras A. Saad
,
Cameron E. Freer
,
Nathanael L. Ackerman
,
Vikash K. Mansinghka
NeurIPS
2017
AIDE: An Algorithm for Measuring the Accuracy of Probabilistic Inference Algorithms
Marco Cusumano-Towner
,
Vikash K Mansinghka
JMLR
2017
Variational Particle Approximations
Ardavan Saeedi
,
Tejas D. Kulkarni
,
Vikash K. Mansinghka
,
Samuel J. Gershman
NeurIPS
2016
A Probabilistic Programming Approach to Probabilistic Data Analysis
Feras Saad
,
Vikash K Mansinghka
NeurIPS
2013
Approximate Bayesian Image Interpretation Using Generative Probabilistic Graphics Programs
Vikash K Mansinghka
,
Tejas D Kulkarni
,
Yura N Perov
,
Josh Tenenbaum
UAI
2008
Church: A Language for Generative Models
Noah D. Goodman
,
Vikash K. Mansinghka
,
Daniel M. Roy
,
Kallista A. Bonawitz
,
Joshua B. Tenenbaum
AISTATS
2007
AClass: A Simple, Online, Parallelizable Algorithm for Probabilistic Classification
Vikash K. Mansinghka
,
Daniel M. Roy
,
Ryan Rifkin
,
Josh Tenenbaum
NeurIPS
2006
Learning Annotated Hierarchies from Relational Data
Daniel M. Roy
,
Charles Kemp
,
Vikash K. Mansinghka
,
Joshua B. Tenenbaum
UAI
2006
Structured Priors for Structure Learning
Vikash K. Mansinghka
,
Charles Kemp
,
Thomas L. Griffiths
,
Joshua B. Tenenbaum