ML Anthology
Authors
Search
About
Marion, Pierre
12 publications
ICLR
2025
Attention Layers Provably Solve Single-Location Regression
Pierre Marion
,
Raphaël Berthier
,
Gérard Biau
,
Claire Boyer
NeurIPS
2025
Attention-Based Clustering
Rodrigo Maulen-Soto
,
Pierre Marion
,
Claire Boyer
AISTATS
2025
Implicit Diffusion: Efficient Optimization Through Stochastic Sampling
Pierre Marion
,
Anna Korba
,
Peter Bartlett
,
Mathieu Blondel
,
Valentin De Bortoli
,
Arnaud Doucet
,
Felipe Llinares-López
,
Courtney Paquette
,
Quentin Berthet
NeurIPS
2025
Large Stepsizes Accelerate Gradient Descent for Regularized Logistic Regression
Jingfeng Wu
,
Pierre Marion
,
Peter Bartlett
JMLR
2025
Scaling ResNets in the Large-Depth Regime
Pierre Marion
,
Adeline Fermanian
,
Gérard Biau
,
Jean-Philippe Vert
COLT
2025
Taking a Big Step: Large Learning Rates in Denoising Score Matching Prevent Memorization
Yu-Han Wu
,
Pierre Marion
,
Gérard Biau
,
Claire Boyer
NeurIPS
2024
Deep Linear Networks for Regression Are Implicitly Regularized Towards Flat Minima
Pierre Marion
,
Lénaïc Chizat
ICMLW
2024
Implicit Diffusion: Efficient Optimization Through Stochastic Sampling
Pierre Marion
,
Anna Korba
,
Peter Bartlett
,
Mathieu Blondel
,
Valentin De Bortoli
,
Arnaud Doucet
,
Felipe Llinares-López
,
Courtney Paquette
,
Quentin Berthet
ICLR
2024
Implicit Regularization of Deep Residual Networks Towards Neural ODEs
Pierre Marion
,
Yu-Han Wu
,
Michael Eli Sander
,
Gérard Biau
NeurIPS
2023
Generalization Bounds for Neural Ordinary Differential Equations and Deep Residual Networks
Pierre Marion
NeurIPS
2023
Leveraging the Two-Timescale Regime to Demonstrate Convergence of Neural Networks
Pierre Marion
,
Raphaël Berthier
NeurIPS
2021
Framing RNN as a Kernel Method: A Neural ODE Approach
Adeline Fermanian
,
Pierre Marion
,
Jean-Philippe Vert
,
Gérard Biau