Maron, Haggai

60 publications

ICML 2025 Balancing Efficiency and Expressiveness: Subgraph GNNs with Walk-Based Centrality Joshua Southern, Yam Eitan, Guy Bar-Shalom, Michael M. Bronstein, Haggai Maron, Fabrizio Frasca
NeurIPS 2025 Beyond Token Probes: Hallucination Detection via Activation Tensors with ACT-ViT Guy Bar-Shalom, Fabrizio Frasca, Yaniv Galron, Yftah Ziser, Haggai Maron
TMLR 2025 Directed Graph Generation with Heat Kernels Marc T. Law, Karsten Kreis, Haggai Maron
TMLR 2025 Foldable SuperNets: Scalable Merging of Transformers with Different Initializations and Tasks Edan Kinderman, Itay Hubara, Haggai Maron, Daniel Soudry
NeurIPS 2025 GradMetaNet: An Equivariant Architecture for Learning on Gradients Yoav Gelberg, Yam Eitan, Aviv Navon, Aviv Shamsian, Theo Putterman, Michael M. Bronstein, Haggai Maron
ICLRW 2025 GradMetaNet: An Equivariant Architecture for Learning on Gradients Yoav Gelberg, Yam Eitan, Aviv Navon, Aviv Shamsian, Theo Putterman, Haggai Maron
ICLR 2025 Homomorphism Expressivity of Spectral Invariant Graph Neural Networks Jingchu Gai, Yiheng Du, Bohang Zhang, Haggai Maron, Liwei Wang
ICLRW 2025 Learning on LLM Output Signatures for Gray Box LLM Behavior Analysis Guy Bar-Shalom, Fabrizio Frasca, Derek Lim, Yoav Gelberg, Yftah Ziser, Ran El-Yaniv, Gal Chechik, Haggai Maron
ICLRW 2025 Learning on LoRAs: GL-Equivariant Processing of Low-Rank Weight Spaces for Large Finetuned Models Theo Putterman, Derek Lim, Yoav Gelberg, Stefanie Jegelka, Haggai Maron
ICLR 2025 Lightning-Fast Image Inversion and Editing for Text-to-Image Diffusion Models Dvir Samuel, Barak Meiri, Haggai Maron, Yoad Tewel, Nir Darshan, Shai Avidan, Gal Chechik, Rami Ben-Ari
ICLR 2025 Topological Blindspots: Understanding and Extending Topological Deep Learning Through the Lens of Expressivity Yam Eitan, Yoav Gelberg, Guy Bar-Shalom, Fabrizio Frasca, Michael M. Bronstein, Haggai Maron
ECML-PKDD 2025 Understanding and Improving Laplacian Positional Encodings for Temporal GNNs Yaniv Galron, Fabrizio Frasca, Haggai Maron, Eran Treister, Moshe Eliasof
NeurIPS 2024 A Flexible, Equivariant Framework for Subgraph GNNs via Graph Products and Graph Coarsening Guy Bar-Shalom, Yam Eitan, Fabrizio Frasca, Haggai Maron
ICLR 2024 Efficient Subgraph GNNs by Learning Effective Selection Policies Beatrice Bevilacqua, Moshe Eliasof, Eli Meirom, Bruno Ribeiro, Haggai Maron
NeurIPSW 2024 Efficient Subgraph GNNs via Graph Products and Coarsening Guy Bar-Shalom, Yam Eitan, Fabrizio Frasca, Haggai Maron
ICML 2024 Equivariant Deep Weight Space Alignment Aviv Navon, Aviv Shamsian, Ethan Fetaya, Gal Chechik, Nadav Dym, Haggai Maron
NeurIPS 2024 Fast Encoder-Based 3D from Casual Videos via Point Track Processing Yoni Kasten, Wuyue Lu, Haggai Maron
NeurIPS 2024 GRANOLA: Adaptive Normalization for Graph Neural Networks Moshe Eliasof, Beatrice Bevilacqua, Carola-Bibiane Schönlieb, Haggai Maron
ICLR 2024 Graph Metanetworks for Processing Diverse Neural Architectures Derek Lim, Haggai Maron, Marc T. Law, Jonathan Lorraine, James Lucas
ICML 2024 Improved Generalization of Weight Space Networks via Augmentations Aviv Shamsian, Aviv Navon, David W. Zhang, Yan Zhang, Ethan Fetaya, Gal Chechik, Haggai Maron
ICML 2024 On the Expressive Power of Spectral Invariant Graph Neural Networks Bohang Zhang, Lingxiao Zhao, Haggai Maron
NeurIPSW 2024 On the Reconstruction of Training Data from Group Invariant Networks Ran Elbaz, Gilad Yehudai, Meirav Galun, Haggai Maron
ICML 2024 Position: Future Directions in the Theory of Graph Machine Learning Christopher Morris, Fabrizio Frasca, Nadav Dym, Haggai Maron, Ismail Ilkan Ceylan, Ron Levie, Derek Lim, Michael M. Bronstein, Martin Grohe, Stefanie Jegelka
ICML 2024 Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products Guy Bar-Shalom, Beatrice Bevilacqua, Haggai Maron
NeurIPS 2024 The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof Derek Lim, Theo Putterman, Robin Walters, Haggai Maron, Stefanie Jegelka
ICMLW 2024 The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof Derek Lim, Theo Putterman, Robin Walters, Haggai Maron, Stefanie Jegelka
NeurIPSW 2024 Topological Blindspots: Understanding and Extending Topological Deep Learning Through the Lens of Expressivity Yam Eitan, Yoav Gelberg, Guy Bar-Shalom, Fabrizio Frasca, Michael M. Bronstein, Haggai Maron
NeurIPSW 2024 Towards Foundation Models on Graphs: An Analysis on Cross-Dataset Transfer of Pretrained GNNs Fabrizio Frasca, Fabian Jogl, Moshe Eliasof, Matan Ostrovsky, Carola-Bibiane Schönlieb, Thomas Gärtner, Haggai Maron
NeurIPSW 2023 Data Augmentations in Deep Weight Spaces Aviv Shamsian, David Zhang, Aviv Navon, Yan Zhang, Miltiadis Kofinas, Idan Achituve, Riccardo Valperga, Gertjan Burghouts, Efstratios Gavves, Cees Snoek, Ethan Fetaya, Gal Chechik, Haggai Maron
ICML 2023 Equivariant Architectures for Learning in Deep Weight Spaces Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, Haggai Maron
ICML 2023 Equivariant Polynomials for Graph Neural Networks Omri Puny, Derek Lim, Bobak Kiani, Haggai Maron, Yaron Lipman
NeurIPS 2023 Expressive Sign Equivariant Networks for Spectral Geometric Learning Derek Lim, Joshua W. Robinson, Stefanie Jegelka, Haggai Maron
ICLRW 2023 Expressive Sign Equivariant Networks for Spectral Geometric Learning Derek Lim, Joshua Robinson, Stefanie Jegelka, Yaron Lipman, Haggai Maron
ICMLW 2023 Expressive Sign Equivariant Networks for Spectral Geometric Learning Derek Lim, Joshua Robinson, Stefanie Jegelka, Haggai Maron
ICML 2023 Graph Positional Encoding via Random Feature Propagation Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, Haggai Maron
NeurIPS 2023 Norm-Guided Latent Space Exploration for Text-to-Image Generation Dvir Samuel, Rami Ben-Ari, Nir Darshan, Haggai Maron, Gal Chechik
ICLR 2023 Sign and Basis Invariant Networks for Spectral Graph Representation Learning Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, Stefanie Jegelka
NeurIPSW 2023 Subgraphormer: Subgraph GNNs Meet Graph Transformers Guy Bar-Shalom, Beatrice Bevilacqua, Haggai Maron
JMLR 2023 Weisfeiler and Leman Go Machine Learning: The Story so Far Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin Grohe, Matthias Fey, Karsten Borgwardt
ICLR 2022 Equivariant Subgraph Aggregation Networks Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael M. Bronstein, Haggai Maron
NeurIPSW 2022 Generalized Laplacian Positional Encoding for Graph Representation Learning Sohir Maskey, Ali Parviz, Maximilian Thiessen, Hannes Stärk, Ylli Sadikaj, Haggai Maron
ICML 2022 Multi-Task Learning as a Bargaining Game Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, Ethan Fetaya
ICML 2022 Optimizing Tensor Network Contraction Using Reinforcement Learning Eli Meirom, Haggai Maron, Shie Mannor, Gal Chechik
ICLRW 2022 Sign and Basis Invariant Networks for Spectral Graph Representation Learning Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, Stefanie Jegelka
NeurIPS 2022 Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, Haggai Maron
ICLR 2021 Auxiliary Learning by Implicit Differentiation Aviv Navon, Idan Achituve, Haggai Maron, Gal Chechik, Ethan Fetaya
ICML 2021 Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks Eli Meirom, Haggai Maron, Shie Mannor, Gal Chechik
ICCV 2021 Deep Permutation Equivariant Structure from Motion Dror Moran, Hodaya Koslowsky, Yoni Kasten, Haggai Maron, Meirav Galun, Ronen Basri
ICML 2021 From Local Structures to Size Generalization in Graph Neural Networks Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, Haggai Maron
IJCAI 2021 On Learning Sets of Symmetric Elements (Extended Abstract) Haggai Maron, Or Litany, Gal Chechik, Ethan Fetaya
ICLR 2021 On the Universality of Rotation Equivariant Point Cloud Networks Nadav Dym, Haggai Maron
WACV 2021 Self-Supervised Learning for Domain Adaptation on Point Clouds Idan Achituve, Haggai Maron, Gal Chechik
ICML 2020 Learning Algebraic Multigrid Using Graph Neural Networks Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, Irad Yavneh
ICML 2020 On Learning Sets of Symmetric Elements Haggai Maron, Or Litany, Gal Chechik, Ethan Fetaya
NeurIPS 2020 Set2Graph: Learning Graphs from Sets Hadar Serviansky, Nimrod Segol, Jonathan Shlomi, Kyle Cranmer, Eilam Gross, Haggai Maron, Yaron Lipman
NeurIPS 2019 Controlling Neural Level Sets Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, Yaron Lipman
ICLR 2019 Invariant and Equivariant Graph Networks Haggai Maron, Heli Ben-Hamu, Nadav Shamir, Yaron Lipman
ICML 2019 On the Universality of Invariant Networks Haggai Maron, Ethan Fetaya, Nimrod Segol, Yaron Lipman
NeurIPS 2019 Provably Powerful Graph Networks Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, Yaron Lipman
NeurIPS 2018 (Probably) Concave Graph Matching Haggai Maron, Yaron Lipman