Marris, Luke

13 publications

IJCAI 2025 Combining Deep Reinforcement Learning and Search with Generative Models for Game-Theoretic Opponent Modeling Zun Li, Marc Lanctot, Kevin R. McKee, Luke Marris, Ian Gemp, Daniel Hennes, Paul Muller, Kate Larson, Yoram Bachrach, Michael P. Wellman
ICML 2025 Convex Markov Games: A New Frontier for Multi-Agent Reinforcement Learning Ian Gemp, Andreas Alexander Haupt, Luke Marris, Siqi Liu, Georgios Piliouras
ICLR 2025 Re-Evaluating Open-Ended Evaluation of Large Language Models Siqi Liu, Ian Gemp, Luke Marris, Georgios Piliouras, Nicolas Heess, Marc Lanctot
ICLR 2024 Approximating Nash Equilibria in Normal-Form Games via Stochastic Optimization Ian Gemp, Luke Marris, Georgios Piliouras
ICLR 2024 Generative Adversarial Equilibrium Solvers Denizalp Goktas, David C. Parkes, Ian Gemp, Luke Marris, Georgios Piliouras, Romuald Elie, Guy Lever, Andrea Tacchetti
ICLR 2024 NfgTransformer: Equivariant Representation Learning for Normal-Form Games Siqi Liu, Luke Marris, Georgios Piliouras, Ian Gemp, Nicolas Heess
ICMLW 2024 Steering Language Models with Game-Theoretic Solvers Ian Gemp, Roma Patel, Yoram Bachrach, Marc Lanctot, Vibhavari Dasagi, Luke Marris, Georgios Piliouras, Siqi Liu, Karl Tuyls
ICLR 2022 NeuPL: Neural Population Learning Siqi Liu, Luke Marris, Daniel Hennes, Josh Merel, Nicolas Heess, Thore Graepel
ICML 2022 Simplex Neural Population Learning: Any-Mixture Bayes-Optimality in Symmetric Zero-Sum Games Siqi Liu, Marc Lanctot, Luke Marris, Nicolas Heess
NeurIPS 2022 Turbocharging Solution Concepts: Solving NEs, CEs and CCEs with Neural Equilibrium Solvers Luke Marris, Ian Gemp, Thomas Anthony, Andrea Tacchetti, Siqi Liu, Karl Tuyls
ICML 2021 Multi-Agent Training Beyond Zero-Sum with Correlated Equilibrium Meta-Solvers Luke Marris, Paul Muller, Marc Lanctot, Karl Tuyls, Thore Graepel
ICLR 2020 A Generalized Training Approach for Multiagent Learning Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Perolat, Siqi Liu, Daniel Hennes, Luke Marris, Marc Lanctot, Edward Hughes, Zhe Wang, Guy Lever, Nicolas Heess, Thore Graepel, Remi Munos
NeurIPS 2018 Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E. Hinton, Timothy Lillicrap